Search results for " Navier–Stokes equations"
showing 7 items of 17 documents
Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions
2013
AbstractNumerical solutions of the laminar Prandtl boundary-layer and Navier–Stokes equations are considered for the case of the two-dimensional uniform flow past an impulsively-started circular cylinder. The various viscous–inviscid interactions that occur during the unsteady separation process are investigated by applying complex singularity analysis to the wall shear and streamwise velocity component of the two solutions. This is carried out using two different methodologies, namely a singularity-tracking method and the Padé approximation. It is shown how the van Dommelen and Shen singularity that occurs in solutions of the Prandtl boundary-layer equations evolves in the complex plane be…
CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension
2012
Abstract In the literature on mechanically agitated solid–liquid systems, several methods are described to estimate the minimum impeller speed Njs at which all particles are suspended, but few studies have been devoted so far to their critical comparative assessment [67] . In the present paper, several alternative Njs prediction methods are applied to CFD results obtained for selected test cases covering a broad range of suspension conditions and impeller speeds. Results are compared with one another and with classic empirical correlations [88] . The aim of the work is to assess the adequacy of different methods for predicting Njs and, more generally, to contribute to a viable CFD-based str…
CFD simulations of early- to fully-turbulent conditions in unbaffled and baffled vessels stirred by a Rushton turbine
2021
Abstract Laboratory scale unbaffled tanks provided with a top cover and a baffled tank both stirred by a Rushton turbine were simulated by carrying out RANS simulations. Three different turbulence models were adopted (k- ω SST, k- e and the SSG Reynolds stress model) to predict the flow field and the relevant performance parameters (power and pumping numbers) of the tank operated from early to fully turbulent conditions. CFD results were compared with literature experimental data and DNS simulation results to validate and properly compare the models. In the range of Reynolds numbers investigated, results showed that, for the unbaffled tank, the SSG model based on Reynolds stresses is a bett…
A dynamic subgrid-scale tensorial eddy viscosity model
1999
In the Navier-Stokes equations the removal of the turbulent fluctuating velocities with a frequency above a certain fixed threshold, employed in the Large Eddy Simulation (LES), causes the appearance of a turbulent stress tensor that requires a number of closure assumptions. In this paper insufficiencies are demonstrated for those closure models which are based on a scalar eddy viscosity coefficient. A new model, based on a tensorial eddy viscosity, is therefore proposed; it employs the Germano identity [1] and allows dynamical evaluation of the single required input coefficient. The tensorial expression for the eddy viscosity is deduced by removing the widely used scalar assumption of the …
Implementation and application of the actuator line model by OpenFOAM for a vertical axis wind turbine
2017
University of Stavanger has started The Smart Sustainable Campus & Energy Lab project, to gain knowledge and facilitate project based education in the field of renewable and sustainable energy and increase the research effort in the same area. This project includes the future installation of a vertical axis wind turbine on the campus roof. A newly developed Computational Fluid Dynamics (CFD) model by OpenFOAM have been implemented to study the wind behavior over the building and the turbine performance. The online available wind turbine model case from Bachant, Goude and Wosnik from 2016 is used as the starting point. This is a Reynolds-Averaged Navier-Stokes equations (RANS) case set up th…
Numerical and experimental investigation of a cross-flow water turbine
2016
ABSTRACTA numerical and experimental study was carried out for validation of a previously proposed design criterion for a cross-flow turbine and a new semi-empirical formula linking inlet velocity to inlet pressure. An experimental test stand was designed to conduct a series of experiments and to measure the efficiency of the turbine designed based on the proposed criterion. The experimental efficiency was compared to that from numerical simulations performed using a RANS model with a shear stress transport (SST) turbulence closure. The proposed semi-empirical velocity formula was also validated against the numerical solutions for cross-flow turbines with different geometries and boundary c…
Effect of the junction angle on turbulent flow at a hydraulic confluence
2018
Despite the existing knowledge concerning the hydrodynamic processes at river junctions, there is still a lack of information regarding the particular case of low width and discharge ratios, which are the typical conditions of mountain river confluences. Aiming at filling this gap, laboratory and numerical experiments were conducted, comparing the results with literature findings. Ten different confluences from 45 ∘ to 90 ∘ were simulated to study the effects of the junction angle on the flow structure, using a numerical code that solves the 3D Reynolds Averaged Navier-Stokes (RANS) equations with the k- ϵ turbulence closure model. The results showed that the higher the junction angle, the …