Search results for " Neoplastic"
showing 10 items of 662 documents
Molecular pathway activation – New type of biomarkers for tumor morphology and personalized selection of target drugs
2018
Anticancer target drugs (ATDs) specifically bind and inhibit molecular targets that play important roles in cancer development and progression, being deeply implicated in intracellular signaling pathways. To date, hundreds of different ATDs were approved for clinical use in the different countries. Compared to previous chemotherapy treatments, ATDs often demonstrate reduced side effects and increased efficiency, but also have higher costs. However, the efficiency of ATDs for the advanced stage tumors is still insufficient. Different ATDs have different mechanisms of action and are effective in different cohorts of patients. Personalized approaches are therefore needed to select the best ATD…
Normal vs cancer thyroid stem cells: the road to transformation
2015
Recent investigations in thyroid carcinogenesis have led to the isolation and characterisation of a subpopulation of stem-like cells, responsible for tumour initiation, progression and metastasis. Nevertheless, the cellular origin of thyroid cancer stem cells (SCs) remains unknown and it is still necessary to define the process and the target population that sustain malignant transformation of tissue-resident SCs or the reprogramming of a more differentiated cell. Here, we will critically discuss new insights into thyroid SCs as a potential source of cancer formation in light of the available information on the oncogenic role of genetic modifications that occur during thyroid cancer develop…
Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells
2017
Abstract Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ…
Chronic Sulforaphane Application Does Not Induce Resistance in Renal Cell Carcinoma Cells.
2018
Background/aim Since the natural compound sulforaphane (SFN) has been shown to stop tumor growth, renal cell carcinoma (RCC) patients often use this drug in addition to their prescribed oncotherapy. The aim of this study was to examine whether resistance to SFN may develop after long-term application. Materials and methods Several RCC cell lines were incubated with SFN for short periods of time (24-72 h) or long periods of time (8 weeks) and cell growth, proliferation, and cell-cycle proteins were analyzed. Results Both short- and long-term application of SFN distinctly reduced RCC cell growth and proliferation. However, differences in the distribution of cells in each phase of the cell cyc…
NOTCH3 expression is linked to breast cancer seeding and distant metastasis
2018
Background Development of distant metastases involves a complex multistep biological process termed the invasion-metastasis cascade, which includes dissemination of cancer cells from the primary tumor to secondary organs. NOTCH developmental signaling plays a critical role in promoting epithelial-to-mesenchymal transition, tumor stemness, and metastasis. Although all four NOTCH receptors show oncogenic properties, the unique role of each of these receptors in the sequential stepwise events that typify the invasion-metastasis cascade remains elusive. Methods We have established metastatic xenografts expressing high endogenous levels of NOTCH3 using estrogen receptor alpha-positive (ERα+) MCF…
Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFα
2016
IF 7.932; International audience; The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has anti-inflammatory and anti-cancer properties. Among pro-inflammatory mediators, tumor necrosis factor a (TNF alpha) plays a paradoxical role in cancer biology with induction of cancer cell death or survival depending on the cellular context. The objective of the study was to evaluate the role of TNFa in DHA-mediated tumor growth inhibition and colon cancer cell death. The treatment of human colorectal cancer cells, HCT-116 and HCT-8 cells, with DHA triggered apoptosis in autocrine TNF alpha-dependent manner. We demonstrated that DHA-induced increased content of TNF alpha mRNA occurred thr…
Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis.
2016
TP53 is a critical tumor suppressor gene that regulates cell cycle progression, apoptosis, cellular senescence and many other properties critical for control of normal cellular growth and death. Due to the pleiotropic effects that TP53 has on gene expression and cellular physiology, mutations at this tumor suppressor gene result in diverse physiological effects. T53 mutations are frequently detected in numerous cancers. The expression of TP53 can be induced by various agents used to treat cancer patients such as chemotherapeutic drugs and ionizing radiation. Radiation will induce Ataxia telangiectasia mutated (ATM) and other kinases that results in the phosphorylation and activation of TP53…
Pattern of Invasion in Human Pancreatic Cancer Organoids Is Associated with Loss of SMAD4 and Clinical Outcome
2020
Abstract Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by extensive local invasion and systemic spread. In this study, we employed a three-dimensional organoid model of human pancreatic cancer to characterize the molecular alterations critical for invasion. Time-lapse microscopy was used to observe invasion in organoids from 25 surgically resected human PDAC samples in collagen I. Subsequent lentiviral modification and small-molecule inhibitors were used to investigate the molecular programs underlying invasion in PDAC organoids. When cultured in collagen I, PDAC organoids exhibited two distinct, morphologically defined invasive phenotypes, mesenchymal an…
Immunomodulatory activity of microRNAs: potential implications for multiple myeloma treatment
2015
Multiple myeloma (MM) is an incurable plasma cell neoplasm accounting for about 10% of all hematologic malignancies. Recently, emerging evidence is disclosing the complexity of bone marrow interactions between MM cells and infiltrating immune cells, which have been reported to promote proliferation, survival and drug resistance of tumor cells. MicroRNAs (miRNAs) are small non-coding RNA molecules with regulatory functions in the cell, whose expression has predictive and prognostic value in different malignancies. MiRNAs are gaining increasing interest due to their capability to polarize the immune-response through different mechanisms, which include the molecular reprogramming of immune cel…
Tumor Microenvironment And Epithelial Mesenchymal Transition As Targets To Overcome Tumor Multidrug Resistance
2020
It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor re…