Search results for " Neoplastic"
showing 10 items of 662 documents
Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma
2016
Aberrant Hedgehog/GLI signaling has been implicated in a diverse spectrum of human cancers, but its role in lung adenocarcinoma (LAC) is still under debate. We show that the downstream effector of the Hedgehog pathway, GLI1, is expressed in 76% of LACs, but in roughly half of these tumors, the canonical pathway activator, Smoothened, is expressed at low levels, possibly owing to epigenetic silencing. In LAC cells including the cancer stem cell compartment, we show that GLI1 is activated noncanonically by MAPK/ERK signaling. Different mechanisms can trigger the MAPK/ERK/GLI1 cascade including KRAS mutation and stimulation of NRP2 by VEGF produced by the cancer cells themselves in an autocrin…
Autocrine CCL5 Effect Mediates Trastuzumab Resistance by ERK Pathway Activation in HER2-Positive Breast Cancer.
2020
Abstract HER2-positive breast cancer is currently managed with chemotherapy in combination with specific anti-HER2 therapies, including trastuzumab. However, a high percentage of patients with HER2-positive tumors do not respond to trastuzumab (primary resistance) or either recur (acquired resistance), mostly due to molecular alterations in the tumor that are either unknown or undetermined in clinical practice. Those alterations may cause the tumor to be refractory to treatment with trastuzumab, promoting tumor proliferation and metastasis. Using continued exposure of a HER2-positive cell line to trastuzumab, we generated a model of acquired resistance characterized by increased expression …
RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma
2019
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge. Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using…
A PTEN inhibitor displays preclinical activity against hepatocarcinoma cells
2016
Phosphatase and tensin homolog (PTEN) gene is considered a tumor suppressor gene. However, PTEN mutations rarely occur in hepatocellular carcinoma (HCC), whereas heterozygosity of PTEN, resulting in reduced PTEN expression, has been observed in 32–44% of HCC patients. In the present study, we investigated the effects of the small molecule PTEN inhibitor VO-OHpic in HCC cells. VO-OHpic inhibited cell viability, cell proliferation and colony formation, and induced senescence-associated β-galactosidase activity in Hep3B (low PTEN expression) and to a lesser extent in PLC/PRF/5 (high PTEN expression) cells, but not in PTEN-negative SNU475 cells. VO-OHpic synergistically inhibited cell viability…
PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer
2017
AbstractCombined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoprote…
Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer
2016
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple sign…
Targeting Angiogenesis in Biliary Tract Cancers: An Open Option
2017
Abstract: Biliary tract cancers (BTCs) are characterized by a bad prognosis and the armamentarium of drugs for their treatment is very poor. Although the inflammatory status of biliary tract represents the first step in the cancerogenesis, the microenvironment also plays a key role in the pathogenesis of BTCs, promoting tumor angiogenesis, invasion and metastasis. Several molecules, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF), are involved in the angiogenesis process and their expression on tumor samples has been explored as prognostic marker in both cholangiocarcinoma and gallbladder cancer. Recent studies evaluated the genomic landscape of BTCs and…
DNA methylomes reveal biological networks involved in human eye development, functions and associated disorders
2017
This work provides a comprehensive CpG methylation landscape of the different layers of the human eye that unveils the gene networks associated with their biological functions and how these are disrupted in common visual disorders. Herein, we firstly determined the role of CpG methylation in the regulation of ocular tissue-specification and described hypermethylation of retinal transcription factors (i.e., PAX6, RAX, SIX6) in a tissue-dependent manner. Second, we have characterized the DNA methylome of visual disorders linked to internal and external environmental factors. Main conclusions allow certifying that crucial pathways related to Wnt-MAPK signaling pathways or neuroinflammation are…
Peroxisome proliferator-activated receptor alpha deficiency impairs regulatory T cell functions: Possible application in the inhibition of melanoma t…
2016
International audience; Regulatory T (Treg) cells are important to induce and maintain immunological self-tolerance. Although the progress accomplished in understanding the functional mechanism of Treg cells, intracellular molecules that control the mechanisms of their suppressive capacity are still on investigation. The present study showed that peroxisome proliferator-activated receptor-alpha deficiency impaired the suppressive activity of Treg cells on CD4(+)CD25(-) and CD8(+) T cell proliferation. In Treg cells, PPARα gene deletion also induced a decrease of migratory abilities, and downregulated the expression of chemokine receptors (CCR-4, CCR-8 and CXCR-4) and p27(KIP1) mRNA. Treg ce…
miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma
2020
Multiple myeloma (MM) is tightly dependent on inflammatory bone marrow microenvironment. IL-17 producing CD4+ T cells (Th17) sustain MM cells growth and osteoclasts-dependent bone damage. In turn, Th17 differentiation relies on inflammatory stimuli. Here, we investigated the role of miR-21 in Th17-mediated MM tumor growth and bone disease. We found that early inhibition of miR-21 in naive T cells (miR-21i-T cells) impaired Th17 differentiation in vitro and abrogated Th17-mediated MM cell proliferation and osteoclasts activity. We validated these findings in NOD/SCID-g-NULL mice, intratibially injected with miR-21i-T cells and MM cells. A Pairwise RNAseq and proteome/phosphoproteome analysis…