Search results for " Neural network"

showing 10 items of 1232 documents

Attention-based Model for Evaluating the Complexity of Sentences in English Language

2020

The automation of text complexity evaluation (ATCE) is an emerging problem which has been tackled by means of different methodologies. We present an effective deep learning- based solution which leverages both Recurrent Neural and the Attention mechanism. The developed system is capable of classifying sentences written in the English language by analysing their syntactical and lexical complexity. An accurate test phase has been carried out, and the system has been compared with a baseline tool based on the Support Vector Machine. This paper represents an extension of a previous deep learning model, which allows showing the suitability of Neural Networks to evaluate sentence complexity in tw…

050101 languages & linguisticsComputer scienceText simplificationcomputer.software_genredeep-learningNLPDeep Learning0501 psychology and cognitive sciencestext simplificationBaseline (configuration management)Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - InformaticaArtificial neural networktext-complexity-evaluationbusiness.industryDeep learning05 social sciences050301 educationExtension (predicate logic)AutomationAutomatic Text SimplificationSupport vector machineArtificial intelligencebusiness0503 educationcomputerNatural language processingSentence
researchProduct

Deep neural attention-based model for the evaluation of italian sentences complexity

2020

In this paper, the Automatic Text Complexity Evaluation problem is modeled as a binary classification task tackled by a Neural Network based system. It exploits Recurrent Neural Units and the Attention mechanism to measure the complexity of sentences written in the Italian language. An accurate test phase has been carried out, and the system has been compared with state-of-art tools that tackle the same problem. The computed performances proof the model suitability to evaluate sentence complexity improving the results achieved by other state-of-the-art systems.

050101 languages & linguisticsExploitComputer science02 engineering and technologyText complexity evaluationMachine learningcomputer.software_genreTask (project management)Text Simplification0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniMeasure (data warehouse)Deep Neural NetworksArtificial neural networkSettore INF/01 - Informaticabusiness.industryItalian languageNatural language processing05 social sciencesComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Deep learningText ComplexityBinary classification020201 artificial intelligence & image processingArtificial intelligenceTest phasebusinesscomputerSentence
researchProduct

Multi-class Text Complexity Evaluation via Deep Neural Networks

2019

Automatic Text Complexity Evaluation (ATE) is a natural language processing task which aims to assess texts difficulty taking into account many facets related to complexity. A large number of papers tackle the problem of ATE by means of machine learning algorithms in order to classify texts into complex or simple classes. In this paper, we try to go beyond the methodologies presented so far by introducing a preliminary system based on a deep neural network model whose objective is to classify sentences into more of two classes. Experiments have been carried out on a manually annotated corpus which has been preprocessed in order to make it suitable for the scope of the paper. The results sho…

050101 languages & linguisticsSettore INF/01 - InformaticaArtificial neural networkText simplificationbusiness.industryComputer science05 social sciencesText simplification02 engineering and technologyDeep neural networkMachine learningcomputer.software_genreClass (biology)Task (project management)Simple (abstract algebra)Automatic Text Complexity Evaluation0202 electrical engineering electronic engineering information engineeringDeep neural networks020201 artificial intelligence & image processing0501 psychology and cognitive sciencesArtificial intelligencebusinesscomputerScope (computer science)
researchProduct

What represents a face? A computational approach for the integration of physiological and psychological data.

1997

Empirical studies of face recognition suggest that faces might be stored in memory by means of a few canonical representations. The nature of these canonical representations is, however, unclear. Although psychological data show a three-quarter-view advantage, physiological studies suggest profile and frontal views are stored in memory. A computational approach to reconcile these findings is proposed. The pattern of results obtained when different views, or combinations of views, are used as the internal representation of a two-stage identification network consisting of an autoassociative memory followed by a radial-basis-function network are compared. Results show that (i) a frontal and a…

050109 social psychologyExperimental and Cognitive PsychologyFacial recognition system050105 experimental psychologyAutoassociative memoryConnectionismArtificial IntelligenceMemoryImage Processing Computer-AssistedHumans0501 psychology and cognitive sciencesComputer SimulationRecognition memoryCommunicationArtificial neural networkbusiness.industryMemoria05 social sciencesCognitionSensory SystemsForm PerceptionOphthalmologyIdentification (information)FacePsychologybusinessCognitive psychologyPerception
researchProduct

Interpretability of Recurrent Neural Networks in Remote Sensing

2020

In this work we propose the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for multivariate time series of satellite data for crop yield estimation. Recurrent nets allow exploiting the temporal dimension efficiently, but interpretability is hampered by the typically overparameterized models. The focus of the study is to understand LSTM models by looking at the hidden units distribution, the impact of increasing network complexity, and the relative importance of the input covariates. We extracted time series of three variables describing the soil-vegetation status in agroe-cosystems -soil moisture, VOD and EVI- from optical and microwave satellites, as well as available in si…

2. Zero hungerMultivariate statisticsNetwork complexity010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologies02 engineering and technology15. Life on landcomputer.software_genre01 natural sciencesRecurrent neural networkDimension (vector space)Redundancy (engineering)Relevance (information retrieval)Data miningTime seriesWater contentcomputer021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpretabilityIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Spiking Neural Networks models targeted for implementation on Reconfigurable Hardware

2017

La tesis presentada se centra en la denominada tercera generación de redes neuronales artificiales, las Redes Neuronales Spiking (SNN) también llamadas ‘de espigas’ o ‘de eventos’. Este campo de investigación se convirtió en un tema popular e importante en la última década debido al progreso de la neurociencia computacional. Las Redes Neuronales Spiking, que tienen no sólo la plasticidad espacial sino también temporal, ofrecen una alternativa prometedora a las redes neuronales artificiales clásicas (ANN) y están más cerca de la operación real de las neuronas biológicas ya que la información se codifica y transmite usando múltiples espigas o eventos en forma de trenes de pulsos. Este campo h…

330406330703330416machine learningspiking neural networks330793neural networksfpgasnn120318
researchProduct

Focal Cortical Lesions Induce Bidirectional Changes in the Excitability of Fast Spiking and Non Fast Spiking Cortical Interneurons

2014

A physiological brain function requires neuronal networks to operate within a well-defined range of activity. Indeed, alterations in neuronal excitability have been associated with several pathological conditions, ranging from epilepsy to neuropsychiatric disorders. Changes in inhibitory transmission are known to play a key role in the development of hyperexcitability. However it is largely unknown whether specific interneuronal subpopulations contribute differentially to such pathological condition. In the present study we investigated functional alterations of inhibitory interneurons embedded in a hyperexcitable cortical circuit at the border of chronically induced focal lesions in mouse …

500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie570Neural NetworksPostsynaptic CurrentExcitotoxicity610lcsh:MedicineNeurophysiologyAction PotentialsNeural Homeostasis600 Technik Medizin angewandte Wissenschaften::610 Medizin und Gesundheitmedicine.disease_causeInhibitory postsynaptic potentialMiceEpilepsyInterneuronsmedicineBiological neural networkAnimalslcsh:ScienceVisual CortexCerebral CortexMembrane potentialMultidisciplinarymusculoskeletal neural and ocular physiologylcsh:RNeurotransmissionBiology and Life SciencesExcitatory Postsynaptic Potentialsmedicine.diseaseVisual cortexmedicine.anatomical_structurenervous systemCellular NeuroscienceExcitatory postsynaptic potentiallcsh:QNeuroscienceResearch ArticleNeurosciencePLoS ONE
researchProduct

Synaptic scaling generically stabilizes circuit connectivity

2011

Neural systems regulate synaptic plasticity avoiding overly strong growth or shrinkage of the connections, thereby keeping the circuit architecture operational. Accordingly, several experimental studies have shown that synaptic weights increase only in direct relation to their current value, resulting in reduced growth for stronger synapses [1]. It is, however, difficult to extract from these studies unequivocal evidence about the underlying biophysical mechanisms that control weight growth. The theoretical neurosciences have addressed this problem by exploring mechanisms for synaptic weight change that contain limiting factors to regulate growth [2]. The effectiveness of these mechanisms i…

573.8Computer science612.8612Plasticity573530lcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceSynaptic weight0302 clinical medicineHomeostatic plasticityBiological neural networklcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biology0303 health sciencesSynaptic scalingGeneral NeuroscienceWeight changelcsh:QP351-495Hebbian theorylcsh:Neurophysiology and neuropsychologyPoster PresentationSynaptic plasticityNeuroscience030217 neurology & neurosurgeryBMC Neuroscience
researchProduct

Learning automata based energy-efficient AI hardware design for IoT applications

2020

Energy efficiency continues to be the core design challenge for artificial intelligence (AI) hardware designers. In this paper, we propose a new AI hardware architecture targeting Internet of Things applications. The architecture is founded on the principle of learning automata, defined using propositional logic. The logic-based underpinning enables low-energy footprints as well as high learning accuracy during training and inference, which are crucial requirements for efficient AI with long operating life. We present the first insights into this new architecture in the form of a custom-designed integrated circuit for pervasive applications. Fundamental to this circuit is systematic encodin…

7621003Computer scienceGeneral MathematicsDesign flow1006General Physics and Astronomy02 engineering and technologySoftwareRobustness (computer science)0202 electrical engineering electronic engineering information engineeringField-programmable gate arrayenergy efficiencyHardware architectureArtificial neural networkLearning automata52business.industryTsetlin machines020208 electrical & electronic engineeringGeneral Engineeringartificial intelligence hardware designArticlesneural networksAutomation020202 computer hardware & architecturebusinessComputer hardwareResearch ArticlePhilosophical transactions. Series A, Mathematical, physical, and engineering sciences
researchProduct

Acoustic characterization of Silica aerogel clamped plates for perfect absorption purpose

2017

International audience; Silica aerogel has been widely studied as bulk material for its extremely low density and thermal conductivity. Plates or membranes made of this extremely soft materials exhibits interesting properties for sound absorption. A novel signal processing method for the characterization of an acoustic metamaterial made of silica aerogel clamped plates is presented. The acoustic impedance of a silica aerogel clamped plate is derived from the elastic theory for the flexural waves, while the transfer matrix method is used to model reflection and transmission coefficients of a single plate. Experimental results are obtained by using an acoustic impedance tube. The difference b…

Absorption (acoustics)Materials scienceAcoustics and UltrasonicsPhysics::Instrumentation and DetectorsTransfer-matrix method (optics)Physics::Optics01 natural sciencesCondensed Matter::Disordered Systems and Neural Networks03 medical and health sciences0302 clinical medicineThermal conductivityArts and Humanities (miscellaneous)0103 physical sciencesReflection coefficientComposite material030223 otorhinolaryngology010301 acousticsComputingMilieux_MISCELLANEOUSMetamaterialAerogel[PHYS.MECA]Physics [physics]/Mechanics [physics][PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]Condensed Matter::Soft Condensed MatterReflection (mathematics)[PHYS.MECA] Physics [physics]/Mechanics [physics]Acoustic impedance[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
researchProduct