Search results for " Neutrino"

showing 10 items of 727 documents

Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

2007

We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live-time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit \Phi^{0}=(E/…

Astroparticle physicsPhysicsNuclear and High Energy PhysicsMuonAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectSolar neutrinoAstrophysics (astro-ph)High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSolar neutrino problemAstrophysicsSkyAstronomiaMeasurements of neutrino speedHigh Energy Physics::Experimentddc:530NeutrinoNeutrino astronomymedia_common
researchProduct

Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in 2000-2002

2005

The results of a search for point sources of high energy neutrinos in the northern hemisphere using data collected by AMANDA-II in the years 2000, 2001 and 2002 are presented. In particular, a comparison with the single-year result previously published shows that the sensitivity was improved by a factor of 2.2. The muon neutrino flux upper limits on selected candidate sources, corresponding to an E^{-2} neutrino energy spectrum, are included. Sky grids were used to search for possible excesses above the background of cosmic ray induced atmospheric neutrinos. This search reveals no statistically significant excess for the three years considered.

Astroparticle physicsPhysicsNuclear and High Energy PhysicsSolar neutrinomedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesFluxCosmic rayQuasarAstrophysicsAstrophysics530SkyMuon neutrinoddc:530Neutrinomedia_common
researchProduct

Erratum to ``Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope'' [Astroparticle Physics 33 (2) (2010)…

2010

International audience; Not Available

Astroparticle physicsPhysicsParticle physics010308 nuclear & particles physicsNeutrino telescopeAstronomy and AstrophysicsSolar neutrino problem01 natural sciencesNeutrino detector0103 physical sciencesMuon fluxNeutrinoNeutrino oscillation[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010303 astronomy & astrophysics
researchProduct

Physics results from the Amanda neutrino detector

2001

In the winter season of 2000, the AMANDA (Antarctic Muon And Neutrino Detector Array) detector was completed to its final state. We report on major physics results obtained from the AMANDA-B10 detector, as well as initial results of the full AMANDA-II detector.

Astroparticle physicsPhysicsParticle physicsMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorSolar neutrino problemNuclear physicsNeutrino detectorHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyNeutrino oscillationPhysics::Atmospheric and Oceanic PhysicsParticle Physics - Phenomenology
researchProduct

Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector

2005

A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

Astroparticle physicsPhysicsParticle physicsRange (particle radiation)AMANDAMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorDark matterHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)NeutralinoFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAMANDA; Dark matter; Neutralino; Neutrino telescopesNuclear physicsNeutrino detectorNeutralinoMuon fluxDark matterHigh Energy Physics::ExperimentNeutrino telescopes
researchProduct

First year performance of the IceCube neutrino telescope

2006

The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-2005 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of eight ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 ns, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence…

Astroparticle physicsPhysicsPhotomultiplierMuonPerformanceDetectorAstrophysics (astro-ph)AstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsIceCube Neutrino ObservatoryAmandaIceCubeDetectionData acquisitionFirst yearAmanda; Detection; First year; IceCube; IceTop; Neutrino; Performance; South poleNeutrinoSouth poleAstronomiaIceTopNeutrinoCherenkov radiation
researchProduct

Does the Sun Shine byppor CNO Fusion Reactions?

2002

We show that solar neutrino experiments set an upper limit of 7.8% (7.3% including the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle, which is an order of magnitude improvement upon the previous limit. New experiments are required to detect CNO neutrinos corresponding to the 1.5% of the solar luminosity that the standard solar model predicts is generated by the CNO cycle.

Astrophysics and AstronomyAstrofísica nuclearCNO cycleNuclear TheoryPhysics::Instrumentation and DetectorsSolar neutrinoSolar luminosityFOS: Physical sciencesGeneral Physics and AstronomyAstrophysicsAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNuclear fusionNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysicsStandard solar modelReaccions nuclears010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaHigh Energy Physics - PhenomenologyPhysics::Space PhysicsNuclear astrophysicsHigh Energy Physics::ExperimentNuclear reactionsNeutrinoOrder of magnitudePhysical Review Letters
researchProduct

Electroweak baryogenesis from a dark sector

2017

Adding an extra singlet scalar $S$ to the Higgs sector can provide a barrier at tree level between a false vacuum with restored electroweak symmetry and the true one. This has been demonstrated to readily give a strong phase transition as required for electroweak baryogenesis. We show that with the addition of a fermionic dark matter particle $\chi$ coupling to $S$, a simple UV-complete model can realize successful electroweak baryogenesis. The dark matter gets a CP asymmetry that is transferred to the standard model through a $CP\ portal\ interaction$, which we take to be a coupling of $\chi$ to $\tau$ leptons and an inert Higgs doublet. The CP asymmetry induced in left-handed $\tau$ lepto…

Astrophysics and AstronomyParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)standard model of particle physicsPhysics beyond the Standard ModelSTANDARD MODELFOS: Physical sciences01 natural sciences7. Clean energy114 Physical sciencesdark matterHiggs sectorStandard Modelpimeä aineHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetry0103 physical sciencesSINGLET010306 general physicsParticle Physics - PhenomenologyPhysicsta114010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::Phenomenologyhiukkasfysiikan standardimalliRADIATIVE NEUTRINO MASShep-phSphaleronBaryogenesisHigh Energy Physics - Phenomenologyastro-ph.COHiggs bosonPHASE-TRANSITIONHigh Energy Physics::ExperimentMATTERAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

High magnetic fields for fundamental physics

2018

Various fundamental-physics experiments such as measurement of the birefringence of the vacuum, searches for ultralight dark matter (e.g., axions), and precision spectroscopy of complex systems (including exotic atoms containing antimatter constituents) are enabled by high-field magnets. We give an overview of current and future experiments and discuss the state-of-the-art DC- and pulsed-magnet technologies and prospects for future developments.

Astrophysics and AstronomyPhysics - Instrumentation and Detectorsmagnet: designmagnetic field: highAtomic Physics (physics.atom-ph)AxionsDark matterComplex systemOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesphysics.atom-phNOPhysics - Atomic PhysicsNuclear physicsPhysics and Astronomy (all)Neutrino mass0103 physical sciencesDark matter[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Axions; Dark matter; High-field magnets; Neutrino mass; Spectroscopy; Vacuum birefringence; Physics and Astronomy (all)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Axionphysics.ins-detSpectroscopyactivity reportExotic atomPhysicsVacuum birefringence010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Polarization (waves)magnet: technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthMagnetic fieldHigh-field magnetsAntimatterMagnetAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background

2020

Sterile neutrinos with mass in the eV-scale and large mixings of order $\theta_0\simeq 0.1$ could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson $\phi$. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, $M_\phi$, and its coupling to sterile neutrinos, $g_s$. Then, we explore how to probe part of the allowed parameter spa…

Astrophysics and AstronomySterile neutrinoParticle physicsScale (ratio)Physics::Instrumentation and Detectorsmedia_common.quotation_subjectPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesNeutrino oscillation010303 astronomy & astrophysicsParticle Physics - Phenomenologymedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Gauge boson010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyhep-phAstronomy and AstrophysicsUniverse3. Good healthSupernovaHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct