Search results for " Nonlinear"
showing 10 items of 1224 documents
Complex Systems: an Interdisciplinary Approach
2011
Two main peculiarities characterize complex systems: the nonlinearity and the noisy environmental interaction. The comprehension of noise role in the dynamics of nonlinear systems plays a key aspect in the efforts devoted to understand and model so-called complex systems.
Spectral approach to the scattering map for the semi-classical defocusing Davey–Stewartson II equation
2019
International audience; The inverse scattering approach for the defocusing Davey–Stewartson II equation is given by a system of D-bar equations. We present a numerical approach to semi-classical D-bar problems for real analytic rapidly decreasing potentials. We treat the D-bar problem as a complex linear second order integral equation which is solved with discrete Fourier transforms complemented by a regularization of the singular parts by explicit analytic computation. The resulting algebraic equation is solved either by fixed point iterations or GMRES. Several examples for small values of the semi-classical parameter in the system are discussed.
Appearances of pseudo-bosons from Black-Scholes equation
2016
It is a well known fact that the Black-Scholes equation admits an alternative representation as a Schr\"odinger equation expressed in terms of a non self-adjoint hamiltonian. We show how {\em pseudo-bosons}, linear or not, naturally arise in this context, and how they can be used in the computation of the pricing kernel.
Efficient formulation of a two-noded geometrically exact curved beam element
2021
The article extends the formulation of a 2D geometrically exact beam element proposed by Jirasek et al. (2021) to curved elastic beams. This formulation is based on equilibrium equations in their integrated form, combined with the kinematic relations and sectional equations that link the internal forces to sectional deformation variables. The resulting first-order differential equations are approximated by the finite difference scheme and the boundary value problem is converted to an initial value problem using the shooting method. The article develops the theoretical framework based on the Navier-Bernoulli hypothesis, with a possible extension to shear-flexible beams. Numerical procedures …
Stochastic analysis of dynamical systems with delayed control forces
2006
Abstract Reduction of structural vibration in actively controlled dynamical system is usually performed by means of convenient control forces dependent of the dynamic response. In this paper the existent studies will be extended to dynamical systems subjected to non-normal delta-correlated random process with delayed control forces. Taylor series expansion of the control forces has been introduced and the statistics of the dynamical response have been obtained by means of the extended Ito differential rule. Numerical application provided shows the capabilities of the proposed method to analyze stochastic dynamic systems with delayed actions under delta-correlated process contrasting statist…
Robust entanglement preparation against noise by controlling spatial indistinguishability
2019
Initialization of composite quantum systems into highly entangled states is usually a must to allow their use for quantum technologies. However, the presence of unavoidable noise in the preparation stage makes the system state mixed, thus limiting the possibility of achieving this goal. Here we address this problem in the context of identical particle systems. We define the entanglement of formation for an arbitrary state of two identical qubits within the operational framework of spatially localized operations and classical communication (sLOCC). We then introduce an entropic measure of spatial indistinguishability under sLOCC as an information resource. We show that spatial indistinguisha…
Energy-efficient quantum computing
2016
In the near future, a major challenge in quantum computing is to scale up robust qubit prototypes to practical problem sizes and to implement comprehensive error correction for computational precision. Due to inevitable quantum uncertainties in resonant control pulses, increasing the precision of quantum gates comes with the expense of increased energy consumption. Consequently, the power dissipated in the vicinity of the processor in a well-working large-scale quantum computer seems unacceptably large in typical systems requiring low operation temperatures. Here, we introduce a method for qubit driving and show that it serves to decrease the single-qubit gate error without increasing the a…
Acoustic spectral hole-burning in a two-level system ensemble
2020
AbstractMicroscopic two-level system (TLS) defects at dielectric surfaces and interfaces are among the dominant sources of loss in superconducting quantum circuits, and their properties have been extensively probed using superconducting resonators and qubits. We report on spectroscopy of TLSs coupling to the strain field in a surface acoustic wave (SAW) resonator. The narrow free spectral range of the resonator allows for two-tone spectroscopy where a strong pump is applied at one resonance, while a weak signal is used to probe a different mode. We map the spectral hole burnt by the pump tone as a function of frequency and extract parameters of the TLS ensemble. Our results suggest that det…
Advanced computation in cardiovascular physiology: New challenges and opportunities
2021
Recent developments in computational physiology have successfully exploited advanced signal processing and artificial intelligence tools for predicting or uncovering characteristic features of physiological and pathological states in humans. While these advanced tools have demonstrated excellent diagnostic capabilities, the high complexity of these computational 'black boxes’ may severely limit scientific inference, especially in terms of biological insight about both physiology and pathological aberrations. This theme issue highlights current challenges and opportunities of advanced computational tools for processing dynamical data reflecting autonomic nervous system dynamics, with a speci…
Intertwining operators between different Hilbert spaces: connection with frames
2009
In this paper we generalize a strategy recently proposed by the author concerning intertwining operators. In particular we discuss the possibility of extending our previous results in such a way to construct (almost) isospectral self-adjoint operators living in different Hilbert spaces. Many examples are discussed in details. Many of them arise from the theory of frames in Hilbert spaces, others from the so-called g-frames.