Search results for " Nonlinear"
showing 10 items of 1224 documents
Approximating hidden chaotic attractors via parameter switching.
2018
In this paper, the problem of approximating hidden chaotic attractors of a general class of nonlinear systems is investigated. The parameter switching (PS) algorithm is utilized, which switches the control parameter within a given set of values with the initial value problem numerically solved. The PS-generated attractor approximates the attractor obtained by averaging the control parameter with the switched values, which represents the hidden chaotic attractor. The hidden chaotic attractors of a generalized Lorenz system and the Rabinovich-Fabrikant system are simulated for illustration. In Refs. 1–3, it is proved that the attractors of a chaotic system, considered as the unique numerical …
On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations
2020
Abstract By using comparison principles, we analyze the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Due to less restrictive assumptions on the coefficients of the equation and on the deviating argument τ , our criteria improve a number of related results reported in the literature.
On deformation of Poisson manifolds of hydrodynamic type
2001
We study a class of deformations of infinite-dimensional Poisson manifolds of hydrodynamic type which are of interest in the theory of Frobenius manifolds. We prove two results. First, we show that the second cohomology group of these manifolds, in the Poisson-Lichnerowicz cohomology, is ``essentially'' trivial. Then, we prove a conjecture of B. Dubrovin about the triviality of homogeneous formal deformations of the above manifolds.
Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand side
2012
Abstract The main goal of this paper is to discuss the existence of periodic solutions of the second order equation: y ″ + η sgn ( y ) = α sin ( β t ) with ( η , α , β ) ∈ R 3 η > 0 . We analyze the dynamics of such an equation around the origin which is a typical singularity of non-smooth dynamical systems. The main results consist in exhibiting conditions on the existence of typical periodic solutions that appear generically in such systems. We emphasize that the mechanism employed here is applicable to many more systems. In fact this work fits into a general program for understanding the dynamics of non-autonomous differential equations with discontinuous right-hand sides.
TOPOLOGICAL QUANTUM DOUBLE
1994
Following a preceding paper showing how the introduction of a t.v.s. topology on quantum groups led to a remarkable unification and rigidification of the different definitions, we adapt here, in the same way, the definition of quantum double. This topological double is dualizable and reflexive (even for infinite dimensional algebras). In a simple case we show, considering the double as the "zero class" of an extension theory, the uniqueness of the double structure as a quasi-Hopf algebra. A la suite d'un précédent article montrant comment l'introduction d'une topologie d'e.v.t. sur les groupes quantiques permet une unification et une rigidification remarquables des différentes définitions,…
Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources
2018
In this paper we construct a viscosity solution of a two-phase free boundary problem for a class of fully nonlinear equation with distributed sources, via an adaptation of the Perron method. Our results extend those in [Caffarelli, 1988], [Wang, 2003] for the homogeneous case, and of [De Silva, Ferrari, Salsa, 2015] for divergence form operators with right hand side.
The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations
1994
A notion of well-behaved Hopf algebra is introduced; reflexivity (for strong duality) between Hopf algebras of Drinfeld-type and their duals, algebras of coefficients of compact semi-simple groups, is proved. A hidden classical group structure is clearly indicated for all generic models of quantum groups. Moyal-product-like deformations are naturally found for all FRT-models on coefficients andC∞-functions. Strong rigidity (H bi 2 ={0}) under deformations in the category of bialgebras is proved and consequences are deduced.
Heteroclinic contours and self-replicated solitary waves in a reaction–diffusion lattice with complex threshold excitation
2008
Abstract The space–time dynamics of the network system modeling collective behavior of electrically coupled nonlinear cells is investigated. The dynamics of a local cell is described by the FitzHugh–Nagumo system with complex threshold excitation. Heteroclinic orbits defining traveling wave front solutions are investigated in a moving frame system. A heteroclinic contour formed by separatrix manifolds of two saddle-foci is found in the phase space. The existence of such structure indicates the appearance of complex wave patterns in the network. Such solutions have been confirmed and analyzed numerically. Complex homoclinic orbits found in the neighborhood of the heteroclinic contour define …
Active spike transmission in the neuron model with a winding threshold manifold
2012
International audience; We analyze spiking responses of excitable neuron model with a winding threshold manifold on a pulse stimulation. The model is stimulated with external pulse stimuli and can generate nonlinear integrate-and-fire and resonant responses typical for excitable neuronal cells (all-or-none). In addition we show that for certain parameter range there is a possibility to trigger a spiking sequence with a finite number of spikes (a spiking message) in the response on a short stimulus pulse. So active transformation of N incoming pulses to M (with M>N) outgoing spikes is possible. At the level of single neuron computations such property can provide an active "spike source" comp…
A nonlinear electronic circuit mimicking the neuronal activity in presence of noise
2013
We propose a nonlinear electronic circuit simulating the neuronal activity in a noisy environment. This electronic circuit is ruled by the set of Bonhaeffer-Van der Pol equations and is excited with a white gaussian noise, that is without external deterministic stimuli. Under these conditions, our circuits reveals the Coherence Resonance signature, that is an optimum of regularity in the system response for a given noise intensity.