Search results for " Nuclear and High Energy Physics."

showing 10 items of 112 documents

Major results from the first plasma campaign of the Wendelstein 7-X stellarator

2017

After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for t…

Magnetic confinementNuclear and High Energy PhysicsTechnology and EngineeringPlasma heatingCyclotron resonanceCONFINEMENT01 natural sciencesElectron cyclotron resonance010305 fluids & plasmaslaw.inventionPHYSICSNuclear physicsstellaratorcurrent drive; magnetic confinement; plasma heating; stellarator; Nuclear and High Energy Physics; Condensed Matter Physicslaw0103 physical sciencesddc:530010306 general physicstellaratorStellaratorPhysicsmagnetic confinementMagnetic confinement fusionplasma heatingcurrent drive;magnetic confinement;plasma heating;stellaratorPlasma530 PhysikCondensed Matter PhysicsTRANSPORTCurrent drivecurrent driveElectron temperaturePlasma diagnosticsAtomic physicsWendelstein 7-X[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]StellaratorNuclear Fusion
researchProduct

ZZ production at the LHC: Fiducial cross sections and distributions in NNLO QCD

2015

We consider QCD radiative corrections to the production of four charged leptons in the ZZ signal region at the LHC. We report on the complete calculation of the next-to-next-to-leading order (NNLO) corrections to this process in QCD perturbation theory. Numerical results are presented for $\sqrt{s}=8$ TeV, using typical selection cuts applied by the ATLAS and CMS collaborations. The NNLO corrections increase the NLO fiducial cross section by about $15\%$, and they have a relatively small impact on the shape of the considered kinematical distributions. In the case of the $\Delta\Phi$ distribution of the two Z candidates, the NNLO corrections improve the agreement of the theoretical predictio…

Nuclear and High Energy Physics530 Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFOS: Physical sciences10192 Physics Institute01 natural scienceslcsh:QC1-999High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::Experiment3106 Nuclear and High Energy Physics010306 general physicslcsh:PhysicsPhysics Letters B
researchProduct

Searching for Physics Beyond the Standard Model in an Off-Axis DUNE Near Detector

2021

Next generation neutrino oscillation experiments like DUNE and T2HK are multi-purpose observatories, with a rich physics program beyond oscillation measurements. A special role is played by their near detector facilities, which are particularly well-suited to search for weakly coupled dark sector particles produced in the primary target. In this paper, we demonstrate this by estimating the sensitivity of the DUNE near detectors to the scattering of sub-GeV DM particles and to the decay of sub-GeV sterile neutrinos ("heavy neutral leptons"). We discuss in particular the importance of the DUNE-PRISM design, which allows some of the near detectors to be moved away from the beam axis. At such o…

Nuclear and High Energy Physics530 Physicshep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFOS: Physical scienceshep-ph10192 Physics InstituteQC770-79801 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. RadioactivityBeyond Standard Model0103 physical sciencesNeutrino PhysicsHigh Energy Physics::Experiment3106 Nuclear and High Energy Physics010306 general physicsParticle Physics - ExperimentParticle Physics - Phenomenology
researchProduct

Deep ROSAT-HRI observations of the NGC 1399/NGC 1404 region: morphology and structure of the X-ray halo

2001

We present the analysis of a deep (167 ks) ROSAT HRI observation of the cD galaxy NGC 1399 in the Fornax cluster. Using both HRI and, at larger radii, archival PSPC data, we find that the radial behavior of the X-ray surface brightness profile is not consistent with a simple Beta model and suggests instead three distinct components. We use a multi-component bidimensional model to study in detail these three components that we identify respectively with the cooling flow region, the galactic and the cluster halo. From these data we derive a binding mass distribution in agreement with that suggested by optical dynamical indicators, with an inner core dominated by luminous matter and an extende…

Nuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxies: jetCooling flowAstrophysicsRadio continuum: galaxieSettore FIS/05 - Astronomia E AstrofisicaGalaxies: clusters: individual (Fornax)ROSATclusters: individual (Fornax); Galaxies: halos; Galaxies: jets; Radio continuum: galaxies; X-rays: galaxies X-rays: individual (NGC 1399 NGC 1404); Space and Planetary Science; Nuclear and High Energy Physics [Galaxies]Surface brightnessFornax ClusterAstrophysics::Galaxy AstrophysicsPhysicsAstrophysics (astro-ph)Astronomy and AstrophysicsGalaxyRam pressureDark matter haloSpace and Planetary ScienceHaloGalaxies: haloX-rays: galaxies X-rays: individual (NGC 1399 NGC 1404)
researchProduct

Measurement of the absolute branching fraction for Λc+→Λμ+νμ

2017

Abstract We report the first measurement of the absolute branching fraction for Λ c + → Λ μ + ν μ . This measurement is based on a sample of e + e − annihilation data produced at a center-of-mass energy s = 4.6  GeV , collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567  pb − 1 . The branching fraction is determined to be B ( Λ c + → Λ μ + ν μ ) = ( 3.49 ± 0.46 ( stat ) ± 0.27 ( syst ) ) % . In addition, we calculate the ratio B ( Λ c + → Λ μ + ν μ ) / B ( Λ c + → Λ e + ν e ) to be 0.96 ± 0.16 ( stat ) ± 0.04 ( syst ) .

Nuclear and High Energy PhysicsBESIII детекторElectron–positron annihilationAnalytical chemistryAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityNOлептоны0103 physical sciencesAbsolute branching fraction010306 general physicsNuclear ExperimentPhysicsAnnihilation010308 nuclear & particles physicsBranching fraction?c +Absolute branching fraction; BESIII; Semi-leptonic decay; Λc+; Nuclear and High Energy PhysicsBESIIIΛc+lcsh:QC1-999BaryonBEPCII коллайдерSemi-leptonic decayHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysicslcsh:Physics
researchProduct

Measurement of cross sections of the interactions e+e−→ ϕϕω and e+e−→ ϕϕϕ at center-of-mass energies from 4.008 to 4.600 GeV

2017

Abstract Using data samples collected with the BESIII detector at the BEPCII collider at six center-of-mass energies between 4.008 and 4.600 GeV, we observe the processes e + e − → ϕ ϕ ω and e + e − → ϕ ϕ ϕ . The Born cross sections are measured and the ratio of the cross sections σ ( e + e − → ϕ ϕ ω ) / σ ( e + e − → ϕ ϕ ϕ ) is estimated to be 1.75 ± 0.22 ± 0.19 averaged over six energy points, where the first uncertainty is statistical and the second is systematic. The results represent first measurements of these interactions.

Nuclear and High Energy PhysicsBESIII детекторe+e- annihilationElectron–positron annihilation01 natural sciencesNOlaw.inventionNuclear physicsCross section (physics)law0103 physical sciencesCross section; e+e−annihilation; Triple quarkonia; Nuclear and High Energy Physics010306 general physicsColliderTriple quarkoniaPhysicsAnnihilationCross section010308 nuclear & particles physicse+e−annihilatione+e− annihilationlcsh:QC1-999BEPCII коллайдерe+e? annihilationCenter of massCross section; e+e- annihilation; Triple quarkonia; Nuclear and High Energy Physicslcsh:Physics
researchProduct

The experience of building and operating COMPASS RICH-1

2010

COMPASS RICH-1 is a large size gaseous Imaging Cherenkov Detector providing hadron identification in the range from 3 to 55 GeV/c, in the wide acceptance spectrometer of the COMPASS Experiment at CERN SPS. It uses a 3 m long C(4)F(10) radiator, a 21 m(2) large VUV mirror surface and two kinds of photon detectors: MAPMTs and MWPCs with CsI photocathodes, covering a total of 5.5 m(2). It is in operation since 2002 and its performance has increased in time thanks to progressive optimization and mostly to a major upgrade which was implemented in 2006. The main characteristics of COMPASS RICH-1 components are described and some specific aspects related to the radiator gas system, the mirror alig…

Nuclear and High Energy PhysicsCherenkov detectorPhysics::Instrumentation and Detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]COMPASS01 natural sciencesParticle identificationParticle identificationlaw.inventionNuclear physicsCOMPASS; CsI; MAPMT; Photon detection; PID; RICH; Instrumentation; Nuclear and High Energy PhysicsOpticslawCompass0103 physical sciencesCOMPASS experimentCsI photoconverter010306 general physicsRICHInstrumentationEvent reconstructionPhysicsLarge Hadron ColliderSpectrometer010308 nuclear & particles physicsbusiness.industryPIDUpgradePhoton detectionMAPMTCsIParticle identification; COMPASS; RICH; MAPMT; CsI photoconverterHigh Energy Physics::Experimentbusiness
researchProduct

The DAMPE silicon–tungsten tracker

2016

Abstract The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. T…

Nuclear and High Energy PhysicsCosmic rays; Dark matter; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; InstrumentationPhysics::Instrumentation and DetectorsCosmic rayParticle detectorsTracking (particle physics)01 natural sciencesParticle detectorOpticscosmic rays0103 physical sciencesDark matterNeutron detection010303 astronomy & astrophysicsInstrumentationAstroparticle physicsPhysicsLarge Hadron ColliderCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleParticle detectors cosmic raysSpaceborne experimentSilicon trackerHigh Energy Physics::Experimentbusiness
researchProduct

IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

2014

This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of sci…

Nuclear and High Energy PhysicsHigh energySC Linac;Neutron source;FEL;Compton source;Advanced accelerators concepts;Particle physicsSettore FIS/07 - FISICA APPLICATA (A BENI CULTURALI AMBIENTALI BIOLOGIA E MEDICINA)Advanced accelerators conceptTechnical designNOAdvanced accelerators conceptsParticle physicSC Linac; FEL; Particle physics; Neutron source; Compton source; Advanced accelerators conceptsInstrumentationFELPhysicsSC LinacSettore FIS/01 - Fisica SperimentaleAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linac; Instrumentation; Nuclear and High Energy PhysicsParticle physicsAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linac; Nuclear and High Energy Physics; InstrumentationCompton sourceNeutron sourceWide fieldSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Dual (category theory)Free Electron LaserAdvanced accelerators concepts Compton source FEL Neutron source Particle physics SC LinacAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linacadvanced accelerators concepts; particle physics; sc linac; compton source; fel; neutron sourceneutron sourcefree electron lasersSystems engineeringFactory (object-oriented programming)Free electron laser
researchProduct

The FIRST experiment at GSI

2012

The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an alread…

Nuclear and High Energy PhysicsIon beamPhysics::Instrumentation and Detectorsmedicine.medical_treatmentNuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ScintillatorElementary-particleFIRST7. Clean energy01 natural sciencesParticle detectorWire chamberNuclear physicsDipole magnetFragmentationPARTICLE THERAPYhadrontherapy; fragmentation; nuclear physics; elementary-particle; instrumentation; experimental methodsHadrontherapy0103 physical sciencesmedicineNeutron detectionddc:530Gaseous detectorION-BEAM010306 general physicsNuclear ExperimentDETECTORInstrumentationGEANT4PARTICLE THERAPY; FLUKA CODE; ION-BEAM; FRAGMENTATION; BENCHMARKING; RADIOTHERAPY; TRANSPORT; DETECTOR; GEANT4; FIRSTPhysicsParticle therapyTime projection chamber010308 nuclear & particles physicsExperimental methodsDetectorScintillatorTRANSPORTSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Hadrontherapy; Fragmentation; Nuclear physics; Elementary-particle; Experimental methods; InstrumentationFLUKA CODEBENCHMARKINGElementary-particle; Experimental methods; Fragmentation; Hadrontherapy; Instrumentation; Nuclear physics; Instrumentation; Nuclear and High Energy PhysicsRADIOTHERAPY
researchProduct