Search results for " Nude"

showing 10 items of 172 documents

NOTCH3 expression is linked to breast cancer seeding and distant metastasis

2018

Background Development of distant metastases involves a complex multistep biological process termed the invasion-metastasis cascade, which includes dissemination of cancer cells from the primary tumor to secondary organs. NOTCH developmental signaling plays a critical role in promoting epithelial-to-mesenchymal transition, tumor stemness, and metastasis. Although all four NOTCH receptors show oncogenic properties, the unique role of each of these receptors in the sequential stepwise events that typify the invasion-metastasis cascade remains elusive. Methods We have established metastatic xenografts expressing high endogenous levels of NOTCH3 using estrogen receptor alpha-positive (ERα+) MCF…

0301 basic medicineCancer ResearchTransplantation HeterologousNotch signaling pathwayEstrogen receptorMice NudeBreast NeoplasmsTriple Negative Breast NeoplasmsTumor stemneCentrosome amplificationTumor stemnessMetastasilcsh:RC254-282MetastasisMetastasis03 medical and health sciences0302 clinical medicineBreast cancerNeoplasm SeedingBreast cancerSurgical oncologyCell Line TumormedicineAnimalsHumansCell Self RenewalReceptor Notch3business.industryGene Expression ProfilingMiddle Agedmedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensPrimary tumorSurvival Analysis3. Good healthChromosomal instabilityGene Expression Regulation NeoplasticSettore BIO/18 - Genetica030104 developmental biologyOncology030220 oncology & carcinogenesisCancer cellCancer researchMCF-7 CellsFemaleRNA InterferencebusinessBrain metastasisResearch ArticleBreast Cancer Research
researchProduct

Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer

2018

Solid malignancies have been speculated to depend on cancer stem cells (CSCs) for expansion and relapse after therapy. Here we report on quantitative analyses of lineage tracing data from primary colon cancer xenograft tissue to assess CSC functionality in a human solid malignancy. The temporally obtained clone size distribution data support a model in which stem cell function in established cancers is not intrinsically, but is entirely spatiotemporally orchestrated. Functional stem cells that drive tumour expansion predominantly reside at the tumour edge, close to cancer-associated fibroblasts. Hence, stem cell properties change in time depending on the cell location. Furthermore, although…

0301 basic medicineColorectal cancerCellClone (cell biology)Mice NudeContext (language use)Colon cancer cancer stem cells tumor microenvironment.Article03 medical and health sciencesCancer stem cellCancer Stem CellsAntineoplastic Combined Chemotherapy ProtocolsmedicineTumor MicroenvironmentAnimalsHumansOsteopontin (OPN Spp1)OsteopontinStem Cell DynamicsCells CulturedCell ProliferationbiologyColon CancerGene Expression ProfilingCancerDisease RelapseTumour growthCell Biologymedicine.diseaseXenograft Model Antitumor AssaysCell biologyGene Expression Regulation NeoplasticOxaliplatinTamoxifen030104 developmental biologymedicine.anatomical_structureColonic Neoplasmsbiology.proteinNeoplastic Stem CellsTherapyStem cellCuesNature cell biology
researchProduct

Microparticles harbouring Sonic hedgehog morphogen improve the vasculogenesis capacity of endothelial progenitor cells derived from myocardial infarc…

2019

Aims Endothelial progenitor cells (EPC) play a role in endothelium integrity maintenance and regeneration. Decreased numbers of EPC or their impaired function correlates with an increase in cardiovascular events. Thus, EPC are important predictors of cardiovascular mortality and morbidity. Microparticles carrying Sonic hedgehog (Shh) morphogen (MPShh+) trigger pro-angiogenic responses, both in endothelial cells and in ischaemic rodent models. Here, we propose that MPShh+ regulates EPC function, thus enhancing vasculogenesis, and correcting the defects in dysfunctional EPC obtained from acute myocardial infarction (AMI) patients. Methods and results The mechanisms underlying Shh pathway func…

0301 basic medicineEndotheliumNitric Oxide Synthase Type IIIPhysiologyAngiogenesis[SDV]Life Sciences [q-bio]Myocardial InfarctionMice NudeNeovascularization PhysiologicAcute myocardial infarction030204 cardiovascular system & hematologyMicroparticlesZinc Finger Protein GLI103 medical and health sciences0302 clinical medicineVasculogenesisCell-Derived MicroparticlesPhysiology (medical)Paracrine CommunicationVasculogenesismedicineAnimalsHumansHedgehog ProteinsProgenitor cellSonic hedgehogAngiogenic ProteinsCells CulturedComputingMilieux_MISCELLANEOUSEndothelial progenitor cellsbiologybusiness.industryNitric oxideSmoothened ReceptorHedgehog signaling pathwayPatched-1 ReceptorVascular endothelial growth factor A030104 developmental biologymedicine.anatomical_structureCase-Control StudiesKLF2embryonic structuresCancer researchbiology.proteincardiovascular systemCardiology and Cardiovascular MedicinebusinessSignal Transductioncirculatory and respiratory physiology
researchProduct

T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita

2016

AbstractT cells are key players in autoimmune diseases by supporting the production of autoantibodies. However, their contribution to the effector phase of antibody-mediated autoimmune dermatoses, i.e., tissue injury and inflammation of the skin, has not been investigated. In this paper, we demonstrate that T cells amplify the development of autoantibody-induced tissue injury in a prototypical, organ-specific autoimmune disease, namely epidermolysis bullosa acquisita (EBA) – characterized and caused by autoantibodies targeting type VII collagen. Specifically, we show that immune complex (IC)-induced inflammation depends on the presence of T cells – a process facilitated by T cell receptor (…

0301 basic medicineEpidermolysis bullosa acquisitamedicine.medical_specialtyCollagen Type VIINeutrophilsT-LymphocytesGene ExpressionMice NudeInflammationAntigen-Antibody ComplexCell CommunicationEpidermolysis Bullosa AcquisitaArticleMice03 medical and health sciencesCricetulus0302 clinical medicinemedicineAnimalsHumansAutoantibodiesSkinAutoimmune diseaseMice Inbred BALB CMultidisciplinarybusiness.industryT-cell receptorAutoantibodyAntibodies MonoclonalReceptors Antigen T-Cell gamma-deltamedicine.diseaseNatural killer T cellDermatologyImmune complexMice Inbred C57BLDisease Models Animal030104 developmental biologyLymphatic systemImmunoglobulin GImmunologyNatural Killer T-CellsLymph NodesRabbitsmedicine.symptombusinessSpleenSignal Transduction030215 immunologyScientific Reports
researchProduct

Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform

2017

Small interfering RNAs (siRNAs) are widely used to study gene function and extensively exploited for their potential therapeutic applications. HIPK2 is an evolutionary conserved kinase that binds and phosphorylates several proteins directly or indirectly related to apoptosis. Recently, an alternatively spliced isoform skipping 81 nucleotides of exon 8 (Hipk2-Δe8) has been described. Selective depletion of Hipk2 full-length (Hipk2-FL) with a specific siRNA that spares the Hipk2-Δe8 isoform has been shown to strongly induce apoptosis, suggesting an unpredicted dominant-negative effect of Hipk2-FL over the Δe8 isoform. From this observation, we sought to take advantage and assessed the therape…

0301 basic medicineGene isoformMaleProgrammed cell deathSmall interfering RNACell SurvivalBlotting WesternMice Nudecolorectal cancerApoptosisHIPK2BiologyProtein Serine-Threonine KinasesGene Expression Regulation Enzymologic03 medical and health sciencesExonRNA interferenceCell Line TumorAnimalsHumansViability assayoff-target effectCell Line TransformedSettore MED/04 - Patologia GeneraleKinaseReverse Transcriptase Polymerase Chain ReactionAlternative splicingalternative splicing isoformoff-target effectsExonsHCT116 CellsMolecular biologyXenograft Model Antitumor AssaysCell biologyGene Expression Regulation NeoplasticIsoenzymesAlternative Splicing030104 developmental biologyRNAi TherapeuticsOncologyalternative splicing isoformsNeoplastic Stem CellsRNA InterferenceHIPK2; alternative splicing isoforms; colorectal cancer; off-target effects; siRNA therapeutic applicationsiRNA therapeutic applicationCarrier ProteinsColorectal NeoplasmsGene DeletionResearch Paper
researchProduct

MET-EGFR dimerization in lung adenocarcinoma is dependent on EGFR mtations and altered by MET kinase inhibition

2017

Advanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors (TKIs) have high response rates in patients with activating EGFR mutations, but acquired resistance is inevitable. Acquisition of the EGFR T790M mutation causes over 50% of resistance; MET amplification is also common. Preclinical data suggest synergy between MET and EGFR inhibitors. We hypothesized that EGFR-MET dimerization determines response to MET inhibition, depending on EGFR mutation status, independently of MET copy number. We tested this hypothesis by generating isogenic cell lines from NCI-H1975 cells, which co-express L858R and T790M EGFR mutations, namely H1975L858R/T790M (EGFR TKI resista…

0301 basic medicineLung NeoplasmsKinase InhibitorsCancer Treatmentlcsh:MedicinePhysical ChemistryBiochemistryFluorophotometryT790MSpectrum Analysis Techniques0302 clinical medicineFluorescence Resonance Energy TransferMedicine and Health SciencesPhosphorylationEnzyme Inhibitorslcsh:ScienceExtracellular Signal-Regulated MAP KinasesEGFR inhibitorsStainingMice Inbred BALB CMultidisciplinaryFluorescent in Situ HybridizationPhysicsCell StainingProto-Oncogene Proteins c-metPrecipitation TechniquesErbB ReceptorsChemistryOncologySpectrophotometry030220 oncology & carcinogenesisPhysical SciencesErlotinibDimerizationProtein BindingResearch Articlemedicine.drugChemical physicsMice NudeMolecular Probe TechniquesAdenocarcinoma of LungAdenocarcinomaBiologyResearch and Analysis Methods03 medical and health sciencesGefitinibGrowth factor receptorCell Line TumormedicineAnimalsHumansImmunoprecipitationMolecular Biology TechniquesLung cancerProtein Kinase InhibitorsMolecular BiologyCell ProliferationCell growthlcsh:RReproducibility of ResultsBiology and Life SciencesDimers (Chemical physics)medicine.diseaseMolecular biologyIsogenic human disease modelsProbe Hybridizationrespiratory tract diseasesHEK293 Cells030104 developmental biologyChemical PropertiesSpecimen Preparation and TreatmentFocal Adhesion Protein-Tyrosine KinasesMutationEnzymologylcsh:QProtein MultimerizationProto-Oncogene Proteins c-aktCytogenetic TechniquesPLOS ONE
researchProduct

Autocrine CCL5 Effect Mediates Trastuzumab Resistance by ERK Pathway Activation in HER2-Positive Breast Cancer.

2020

Abstract HER2-positive breast cancer is currently managed with chemotherapy in combination with specific anti-HER2 therapies, including trastuzumab. However, a high percentage of patients with HER2-positive tumors do not respond to trastuzumab (primary resistance) or either recur (acquired resistance), mostly due to molecular alterations in the tumor that are either unknown or undetermined in clinical practice. Those alterations may cause the tumor to be refractory to treatment with trastuzumab, promoting tumor proliferation and metastasis. Using continued exposure of a HER2-positive cell line to trastuzumab, we generated a model of acquired resistance characterized by increased expression …

0301 basic medicineMAPK/ERK pathwayCancer ResearchMAP Kinase Signaling SystemReceptor ErbB-2medicine.medical_treatmentMice NudeApoptosisBreast NeoplasmsCCL5Metastasis03 medical and health sciencesMice0302 clinical medicineBreast cancerAntineoplastic Agents ImmunologicalTrastuzumabmedicineBiomarkers TumorTumor Cells CulturedGene silencingAnimalsHumansskin and connective tissue diseasesAutocrine signallingneoplasmsChemokine CCL5Neoadjuvant therapyCell Proliferationbusiness.industryGene Expression ProfilingTrastuzumabmedicine.diseaseXenograft Model Antitumor AssaysGene Expression Regulation NeoplasticAutocrine Communication030104 developmental biologyOncologyDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer researchFemalebusinessmedicine.drugMolecular cancer therapeutics
researchProduct

PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer

2017

AbstractCombined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoprote…

0301 basic medicineMAPK/ERK pathwayPTENRNA interferenceprotein Kinase inhibitorsRNA Small InterferinghumansPhosphoinositide-3 Kinase InhibitorsAnimals; cell line tumor; drug synergism; everolimus; female; humans; Janus Kinase 1; MAP Kinase Kinase Kinases; mice; neoplastic stem cells; PTEN phosphohydrolase; phosphatidylinositol 3-Kinases; protein Kinase inhibitors; proto-oncogene Proteins c-akt; Pyridones; Pyrimidinones; RNA Interference; RNA Small Interfering; STAT3 Transcription Factor; TOR Serine-Threonine KinasesMultidisciplinaryMAPK/PI3K pathway inhibitiononcology MAPK/PI3K pathway inhibitionTOR Serine-Threonine Kinasescell lineMAPK/PI3K inhibition oncology. inhibition. PTEN gene mRNA cancer cell lines MEK/mTORMAP Kinase Kinase KinasesfemaleoncologymTORRNA InterferenceSTAT3 Transcription FactortumormicePyridonesMice NudePyrimidinonesBiologyphosphatidylinositol 3-KinasesSmall InterferingArticle03 medical and health sciencesMediatorSettore MED/04 - PATOLOGIA GENERALECell Line TumormedicinePTENAnimalsPI3K/AKT/mTOR pathwaydrug synergismSettore MED/06 - ONCOLOGIA MEDICAneoplastic stem cellsRPTORCancerJanus Kinase 1medicine.diseaseeverolimusproto-oncogene Proteins c-aktBlockade030104 developmental biologyCancer researchbiology.proteinRNAPTEN phosphohydrolase
researchProduct

Antibody–Fc/FcR Interaction on Macrophages as a Mechanism for Hyperprogressive Disease in Non–small Cell Lung Cancer Subsequent to PD-1/PD-L1 Blockade

2019

Abstract Purpose: Hyperprogression (HP), a paradoxical boost in tumor growth, was described in a subset of patients treated with immune checkpoint inhibitors (ICI). Neither clinicopathologic features nor biological mechanisms associated with HP have been identified. Experimental Design: Among 187 patients with non–small cell lung cancer (NSCLC) treated with ICI at our institute, cases with HP were identified according to clinical and radiologic criteria. Baseline histologic samples from patients treated with ICI were evaluated by IHC for myeloid and lymphoid markers. T-cell–deficient mice, injected with human lung cancer cells and patient-derived xenografts (PDX) belonging to specific mutat…

0301 basic medicineMaleCancer ResearchMyeloidLung NeoplasmsCD33Programmed Cell Death 1 ReceptorFc receptorMice NudeMice SCIDReceptors Fcnon-small cell lung cancer Hyperprogression immune checkpoint inhibitors.B7-H1 AntigenArticle03 medical and health sciences0302 clinical medicineImmunophenotypingAntineoplastic Agents ImmunologicalPD-L1Carcinoma Non-Small-Cell LungCell Line TumormedicineAnimalsHumansLung cancerAntibodies Blockingbiologybusiness.industryMacrophagesmedicine.diseaseXenograft Model Antitumor Assays3. Good healthImmunoglobulin Fc FragmentsTumor Burden030104 developmental biologymedicine.anatomical_structureNivolumabOncology030220 oncology & carcinogenesisbiology.proteinCancer researchImmunohistochemistryFemaleAntibodybusinessClinical Cancer Research
researchProduct

MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation

2017

Summary Most patients with advanced triple-negative breast cancer (TNBC) develop drug resistance. MYC and MCL1 are frequently co-amplified in drug-resistant TNBC after neoadjuvant chemotherapy. Herein, we demonstrate that MYC and MCL1 cooperate in the maintenance of chemotherapy-resistant cancer stem cells (CSCs) in TNBC. MYC and MCL1 increased mitochondrial oxidative phosphorylation (mtOXPHOS) and the generation of reactive oxygen species (ROS), processes involved in maintenance of CSCs. A mutant of MCL1 that cannot localize in mitochondria reduced mtOXPHOS, ROS levels, and drug-resistant CSCs without affecting the anti-apoptotic function of MCL1. Increased levels of ROS, a by-product of a…

0301 basic medicinePhysiologyMice NudeTriple Negative Breast NeoplasmsOxidative phosphorylationTumor initiationMitochondrionBiologyOxidative PhosphorylationArticleProto-Oncogene Proteins c-myc03 medical and health sciencesCancer stem cellCell Line TumorAnimalsHumansMCL1Molecular BiologyTriple-negative breast cancerchemistry.chemical_classificationReactive oxygen speciesCell BiologyMitochondria030104 developmental biologychemistryDrug Resistance NeoplasmNeoplastic Stem CellsCancer researchMyeloid Cell Leukemia Sequence 1 ProteinFemaleStem cellReactive Oxygen SpeciesCell Metabolism
researchProduct