Search results for " Numerical Method"
showing 10 items of 42 documents
Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods
2015
Abstract Sensitivity analysis represents an important step in improving the understanding and use of environmental models. Indeed, by means of global sensitivity analysis (GSA), modellers may identify both important ( factor prioritisation ) and non-influential ( factor fixing ) model factors. No general rule has yet been defined for verifying the convergence of the GSA methods. In order to fill this gap this paper presents a convergence analysis of three widely used GSA methods (SRC, Extended FAST and Morris screening) for an urban drainage stormwater quality–quantity model. After the convergence was achieved the results of each method were compared. In particular, a discussion on peculiar…
Global sensitivity analysis in wastewater treatment modelling
2019
Global sensitivity analysis (GSA) is a valuable tool to support the use of mathematical models. GSA allows the identifcation of the effect of model and input factor uncertainty on the model response, also considering the effect due to the interactions among factors. During recent years, the wastewater modelling feld has embraced the use of GSA. Wastewater modellers have tried to transfer the knowledge and experience from other disciplines and other water modelling felds.
MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes
2011
Abstract A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains t…
Mathematical and numerical analysis of initial boundary valueproblem for a linear nonlocal equation
2019
We propose and study a numerical scheme for bounded distributional solutions of the initial boundary value problem for the anomalous diffusion equation ∂t u +Lμu = 0 in a bounded domain supplemented with inhomogeneous boundary conditions. Here Lμ is a class of nonlocal operators including fractional Laplacian. ⃝c 2019 InternationalAssociation forMathematics andComputers in Simulation (IMACS). Published by ElsevierB.V.All rights reserved.
Anisotropic potential of velocity fields in real fluids: Application to the MAST solution of shallow water equations
2013
In the present paper it is first shown that, due to their structure, the general governing equations of uncompressible real fluids can be regarded as an "anisotropic" potential flow problem and closed streamlines cannot occur at any time. For a discretized velocity field, a fast iterative procedure is proposed to order the computational elements at the beginning of each time level, allowing a sequential solution element by element of the advection problem. Some closed circuits could appear due to the discretization error and the elements involved in these circuits could not be ordered. We prove in the paper that the total flux of these not ordered elements goes to zero by refining the compu…
Interference Effects in Photodetachment of F- in a Strong Circularly Polarized Laser Pulse
2007
A numerical simulation of photodetachment of F{sup -} by a circularly polarized laser pulse has been accomplished by using a Keldysh-type approach. The numerical results are in agreement with measurements of photoelectron energy spectra recently reported in the literature. The features exhibited by the spectra are traced back to quantum interference effects, in the same spirit as in a double-slit experiment in the time doma0008.
Simple absorbing layer conditions for shallow wave simulations with Smoothed Particle Hydrodynamics
2013
Abstract We study and implement a simple method, based on the Perfectly Matched Layer approach, to treat non reflecting boundary conditions with the Smoothed Particles Hydrodynamics numerical algorithm. The method is based on the concept of physical damping operating on a fictitious layer added to the computational domain. The method works for both 1D and 2D cases, but here we illustrate it in the case of 1D and 2D time dependent shallow waves propagating in a finite domain.
Electronic Transport in carbon nanotubes under traction, bending, torsion and misalignment of the two ends
2013
Studio delle proprietà meccaniche di compositi rinforzati con nanotubi in carbonio mediante un nuovo approccio numerico misto
2012
I CNTs primeggiano in rigidezza, resistenza a rottura, resilienza, allungamento a rottura, conducibilità termica e conducibilità elettrica. Un modo di avvantaggiarsi delle loro singolari proprietà consiste nell’incorporarli in una matrice per costruire materiali compositi nanostrutturati. Questo articolo presenta un nuovo modello misto, numerico-analitico, che consente di prevedere le caratteristiche elastiche di nanocompositi con distribuzione random dei CNTs, tenendo conto della curvatura che gli stessi mostrano quando sono immersi nel polimero. L’approccio ibrido rappresenta un’apprezzabile evoluzione della modellazione micromeccanica e può essere applicato a qualsiasi composito nanostru…