Search results for " Open Quantum Systems"
showing 10 items of 41 documents
Purification of Lindblad dynamics, geometry of mixed states and geometric phases
2015
We propose a nonlinear Schr\"odinger equation in a Hilbert space enlarged with an ancilla such that the partial trace of its solution obeys to the Lindblad equation of an open quantum system. The dynamics involved by this nonlinear Schr\"odinger equation constitutes then a purification of the Lindbladian dynamics. This nonlinear equation is compared with other Schr\"odinger like equations appearing in the theory of open systems. We study the (non adiabatic) geometric phases involved by this purification and show that our theory unifies several definitions of geometric phases for open systems which have been previously proposed. We study the geometry involved by this purification and show th…
Collective decoherence of cold atoms coupled to a Bose-Einstein condensate
2009
We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system…
Dynamics of Non Classically Reproducible Entanglement
2008
We investigate when the quantum correlations of a bipartite system, under the influence of environments with memory, are not reproducible with certainty by a classical local hidden variable model. To this purpose, we compare the dynamics of a Bell inequality with that of entanglement, as measured by concurrence. We find time regions when Bell inequality is not violated even in correspondence to high values of concurrence (up to $\approx 0.8$). We also suggest that these results may be observed by adopting a modification of a recent experimental optical setup. These findings indicate that even highly entangled systems cannot be exploited with certainty in contexts where the non classical rep…
Connection among entanglement, mixedness, and nonlocality in a dynamical context
2010
We investigate the dynamical relations among entanglement, mixedness and nonlocality, quantifed by concurrence C, purity P and maximum of Bell function B, respectively, in a system of two qubits in a common structured reservoir. To this aim we introduce the C-P-B parameter space and analyze the time evolution of the point representative of the system state in such a space. The dynamical interplay among entanglement, mixedness and nonlocality strongly depends on the initial state of the system. For a two-excitation Bell state the representative point draws a multi-branch curve in the C-P-B space and we show that a closed relation among these quantifers does not hold. By extending the known r…
Non-classicality of optomechanical devices in experimentally realistic operating regimes
2013
Enforcing a non-classical behavior in mesoscopic systems is important for the study of the boundaries between quantum and classical world. Recent experiments have shown that optomechanical devices are promising candidates to pursue such investigations. Here we consider two different setups where the indirect coupling between a three-level atom and the movable mirrors of a cavity is achieved. The resulting dynamics is able to conditionally prepare a non-classical state of the mirrors by means of projective measurements operated over a pure state of the atomic system. The non-classical features are persistent against incoherent thermal preparation of the mechanical systems and their dissipati…
Emergence of non-Markovianity in the emission process of an atom in a half-cavity
2014
We study quantum non-Markovianity in the early stage of the emission process of a two-level atom coupled to a semi-infinite waveguide, where the waveguide termination behaves as a perfect mirror. Specifically, we restrict to the analysis of the process for times shorter than twice the time delay t_d, where t_d is the duration of a round trip along the atom-mirror path. We show the emergence of a threshold in the parameters space separating the Markovian and non-Markovian regions.
Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise
2010
We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.
Collision-model-based approach to non-Markovian quantum dynamics
2013
We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the bath with memory by introducing inter-ancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuos limit one can derive a general master equation, which while keeping such features is guaranteed to describe an unconditionally completely positive and tra…
Non-Markovianity of a quantum emitter in front of a mirror
2014
We consider a quantum emitter ("atom") radiating in a one-dimensional (1D) photonic waveguide in the presence of a single mirror, resulting in a delay differential equation for the atomic amplitude. We carry out a systematic analysis of the non-Markovian (NM) character of the atomic dynamics in terms of refined, recently developed notions of quantum non-Markovianity such as indivisibility and information back-flow. NM effects are quantified as a function of the round-trip time and phase shift associated with the atom-mirror optical path. We find, in particular, that unless an atom-photon bound state is formed a finite time delay is always required in order for NM effects to be exhibited. Th…
Structural change in multipartite entanglement sharing: a random matrix approach
2010
We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random-matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-environment subsystems, the entanglement-sharing structure u…