Search results for " Optoelectronics"

showing 10 items of 270 documents

All-fibered high-quality low duty-cycle 20-GHz and 40-GHz picosecond pulse sources

2007

International audience; In this work, we demonstrate all-fibered 20-GHz and 40-GHz picosecond pulse sources with duty cycles as low as 1/14. The pulse train is achieved via the high-quality compression of an initial sinusoidal beating through four segments of optical fibers. General design rules are proposed and experimental results are in agreement with numerical predictions.

Femtosecond pulse shapingOptical fiberMaterials science02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsQuality (physics)OpticsFiber Bragg gratinglaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringPulse waveElectrical and Electronic EngineeringOptical amplifier[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNonlinear opticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPicosecond pulsePulse compressionDuty cycleOptoelectronicsbusinessUltrashort pulsePhase modulation
researchProduct

Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

2018

International audience; We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

Femtosecond pulse shapingOptical fiberMaterials scienceGaussianNonlinear spectral compression02 engineering and technologynonlinear fiber optics01 natural scienceslaw.invention010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic Engineering[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPulse shapingAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)Nonlinear systemsymbolsbusinessUltrashort pulseBandwidth-limited pulsepulse shaping
researchProduct

All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping

2012

International audience; We demonstrate efficient spectral compression of picosecond pulses in an all-fiber configuration at telecommunication wavelengths. A spectral compression by a factor 12 is achieved. Performing temporal shaping with a parabolic pulse significantly improves the spectral compression with much lower substructures and an enhanced Strehl ratio.

Femtosecond pulse shapingOptical fiberMaterials sciencePhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringEngineering (miscellaneous)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryStrehl ratioPulse shapingAtomic and Molecular Physics and OpticsPulse compressionPicosecondOptoelectronicsTelecommunicationsbusinessPhase modulationPhotonic-crystal fiber
researchProduct

Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating

2006

International audience; We propose a new method for generating flat self-phase modulation (SPM)-broadened spectra based on seeding a highly nonlinear fiber (HNLF) with chirp-free parabolic pulses generated using linear pulse shaping in a superstructured fiber Bragg grating (SSFBG). We show that the use of grating reshaped parabolic pulses allows substantially better performance in terms of the extent of SPM-based spectral broadening and flatness relative to conventional hyperbolic secant (sech) pulses. We demonstrate both numerically and experimentally the generation of SPMbroadened pulses centred at 1542nm with 92% of the pulse energy remaining within the 29nm 3dB spectral bandwidth. Appli…

Femtosecond pulse shapingPHOSFOSMaterials sciencebusiness.industryPhysics::Optics02 engineering and technology01 natural sciencesPulse shapingGraded-index fiberAtomic and Molecular Physics and Optics010309 optics020210 optoelectronics & photonicsOpticsFiber Bragg grating0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsbusinessSelf-phase modulationBandwidth-limited pulsePhotonic-crystal fiber
researchProduct

Parabolic Pulse Amplifiers

2008

International audience; Recent studies in nonlinear optics have led to the discovery of a new class of ultrashort pulse generated in fiber amplifiers by the self-similar propagation of an arbitrary input pulse. These pulses with a parabolic shape and linear chirp, called `optical similaritons,' represent asymptotic solutions of the nonlinear Schrödinger equation with gain, towards which any initial pulse of given energy converges, independently of its intensity profile. Parabolic pulse amplifiers can be easily developed with standard optical fibers and commercial devices. Our goal here is to emphasize the main properties of similaritons and to discuss a few of their numerous new application…

Femtosecond pulse shapingPhysicsOptical amplifierbusiness.industryPhysics::Optics02 engineering and technology01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticsMultiphoton intrapulse interference phase scan0103 physical sciences[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0202 electrical engineering electronic engineering information engineeringsymbolsChirp[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessNonlinear Schrödinger equationUltrashort pulseBandwidth-limited pulse
researchProduct

Tailored waveform generation in mode-locked fiber lasers by in-cavity pulse shaper

2014

International audience; We numerically show the possibility of pulse shaping in a mode-locked fiber laser by inclusion of an amplitude-phase spectral filter into the laser cavity. Various advanced temporal waveforms are generated, including parabolic, flat-top and triangular pulses.

Femtosecond pulse shaping[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPhysics::Optics02 engineering and technologyInjection seederLaser01 natural sciencesPulse shapinglaw.invention010309 optics020210 optoelectronics & photonicsOpticsFiber Bragg gratingMultiphoton intrapulse interference phase scanlawFiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringbusinessBandwidth-limited pulse
researchProduct

Amplifier similariton fiber laser with nonlinear spectral compression

2012

International audience; We propose a new concept of a fiber laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear spectral pulse compression in the passive fiber. The latter process allows for transform-limited picosecond pulse generation, and improves the laser's power efficiency by preventing strong spectral filtering from being highly dissipative. Aside from laser technology, the proposed scheme opens new possibilities for studying nonlinear dynamical processes. As an example, we demonstrate a clear period-doubling route to chaos in such nonlinear laser system.

Femtosecond pulse shaping[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryAmplifierPhysics::Optics02 engineering and technologyLaser01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 optics020210 optoelectronics & photonicsOpticslawPulse compressionFiber laser0103 physical sciencesUltrafast laser spectroscopy0202 electrical engineering electronic engineering information engineeringLaser power scalingbusinessBandwidth-limited pulse
researchProduct

Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter

2014

International audience; We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

Femtosecond pulse shaping[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPhysics::Optics02 engineering and technologyInjection seeder01 natural sciencesPulse shapingAtomic and Molecular Physics and Opticslaw.invention010309 optics020210 optoelectronics & photonicsOpticsMode-lockingFiber Bragg gratinglawFiber laserOptical cavity0103 physical sciences0202 electrical engineering electronic engineering information engineeringbusinessBandwidth-limited pulse
researchProduct

Effects of fourth-order fiber dispersion on ultrashort parabolic optical pulses in the normal dispersion regime

2011

International audience; We propose a new method for the generation of both triangular-shaped optical pulses and flat-top, coherent supercontinuum spectra using the effect of fourth-order dispersion on parabolic pulses in a passive, normally dispersive highly nonlinear fiber. The pulse re-shaping process is described qualitatively and is compared to numerical simulations.

Femtosecond pulse shaping[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials sciencebusiness.industryPhysics::OpticsStatistical and Nonlinear Physics02 engineering and technology01 natural sciencesAtomic and Molecular Physics and OpticsSupercontinuum010309 optics020210 optoelectronics & photonicsOpticsMultiphoton intrapulse interference phase scan0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringDispersion-shifted fiberbusinessUltrashort pulseBandwidth-limited pulsePhotonic-crystal fiberJournal of the Optical Society of America B
researchProduct

Effectiveness of nonlinear optical loop mirrors in chirped fiber gratings compensated dispersion-managed transmission systems

2005

International audience; We show that nonlinear optical loop mirrors can dramatically suppress the side peaks induced by the group delay ripples in chirped fiber gratings compensated dispersion-managed systems and significantly improve the system performance.

Fiber gratingsMaterials sciencegenetic structuresbusiness.industryNonlinear optics02 engineering and technologyTransmission system01 natural sciences010309 opticsLoop (topology)[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryNonlinear optical020210 optoelectronics & photonicsOptics0103 physical sciences[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry0202 electrical engineering electronic engineering information engineeringOptoelectronicsDispersion managedbusinessDiffraction gratingGroup delay and phase delay
researchProduct