Search results for " Oxidation-Reduction"

showing 10 items of 21 documents

Peroxisomal beta-oxidation activities and gamma-decalactone production by the yeast Yarrowia lipolytica.

1998

International audience; gamma-Decalactone is a peachy aroma compound resulting from the peroxisomal beta-oxidation of ricinoleic acid by yeasts. The expression levels of acyl-CoA oxidase (gene deletion) and 3-ketoacyl-CoA thiolase activities (gene amplification on replicative plasmids) were modified in the yeast Yarrowia lipolytica. The effects of these modifications on beta-oxidation were measured. Overexpression of thiolase activity did not have any effect on the overall beta-oxidation activity. The disruption of one of the acyl-CoA oxidase genes resulted in an enhanced activity. The enhancement led to an increase of overall beta-oxidation activity but reduced the gamma-decalactone produc…

MESH: Oxidation-ReductionRicinoleic acidMESH: MicrobodiesMicrobodiesApplied Microbiology and BiotechnologyAROME DE PECHELactoneschemistry.chemical_compoundMESH : BiotransformationYeastsMESH : Microbodies[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAcyl-CoA oxidaseMESH: Blotting NorthernNorthern[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[INFO.INFO-BT]Computer Science [cs]/Biotechnology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyBiotransformationMESH : Oxidation-ReductionMESH: BiotransformationMESH : YeastsOxidase testbiologyBlottingCatabolismThiolaseMESH: YeastsMESH : Blotting NorthernYarrowiaGeneral MedicinePeroxisomeBlotting Northernbiology.organism_classificationYeastMESH : LactonesMESH: Ricinoleic Acids[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology[INFO.INFO-BT] Computer Science [cs]/BiotechnologyBiochemistrychemistryMESH : Ricinoleic AcidsACYL COA OXYDASERicinoleic AcidsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: LactonesBiotechnology
researchProduct

Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice.

2012

Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 μmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice…

MESH: Oxidation-Reduction[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEndocrinology Diabetes and MetabolismGlucose uptakeAMP-Activated Protein KinasesInbred C57BLMice0302 clinical medicineAMP-activated protein kinaseMESH : Lipid MetabolismHyperinsulinemiaMESH: AnimalsMESH: AMP-Activated Protein KinasesMESH : Muscle SkeletalMESH : Fatty AcidsBeta oxidationMESH: Lipid Metabolism0303 health sciencesMESH: Muscle SkeletalbiologyMESH : Diet High-FatFatty AcidsMESH: Energy MetabolismMESH : AMP-Activated Protein KinasesMESH: Mitochondria MuscleSkeletal3. Good healthApelinMitochondriaMESH: Fatty AcidsMESH : Cyclic AMP-Dependent Protein KinasesMESH: Insulin ResistanceAlimentation et NutritionApelinIntercellular Signaling Peptides and ProteinsMuscleMESH : Insulin ResistanceOxidation-Reductionmedicine.medical_specialtyMESH : Mitochondria Muscle030209 endocrinology & metabolismMESH : Mice Inbred C57BLMESH: Cyclic AMP-Dependent Protein KinasesDiet High-Fat03 medical and health sciencesInsulin resistanceAdipokinesMESH: Mice Inbred C57BLInternal medicineMESH : MiceInternal MedicinemedicineFood and NutritionAnimalsMuscle SkeletalMESH: Intercellular Signaling Peptides and ProteinsMESH: MiceMESH : Intercellular Signaling Peptides and Proteins030304 developmental biologyMESH : Oxidation-ReductionAMPKmedicine.diseaseLipid MetabolismCyclic AMP-Dependent Protein KinasesMitochondria MuscleDietMice Inbred C57BLMESH : Energy Metabolism[SDV.AEN] Life Sciences [q-bio]/Food and NutritionAMP-Activated Protein Kinases;Animals;Cyclic AMP-Dependent Protein Kinases;Diet;High-Fat;Energy Metabolism;Fatty Acids;Insulin Resistance;Intercellular Signaling Peptides and Proteins;Lipid Metabolism;Mice;Inbred C57BL;Mitochondria;Muscle;Skeletal;Oxidation-ReductionHigh-FatMESH: Diet High-FatMetabolismEndocrinologyMitochondrial biogenesisbiology.proteinMESH : AnimalsInsulin ResistanceEnergy Metabolism[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Screening of lactic acid bacteria for reducing power using a tetrazolium salt reduction method on milk agar.

2013

WOS:000315703100020 ; www.elsevier.com/locate/jbiosc; International audience; Reducing activity is a physiological property of lactic acid bacteria (LAB) of technological importance. We developed a solid medium with tetrazolium dyes enabling weakly and strongly reducing LAB to be discriminated. It was used to quantify populations in a mixed culture (spreading method) and screen strains (spot method).

MESH: Oxidation-Reduction[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionTetrazolium Saltstetrazolium saltApplied Microbiology and Biotechnologychemistry.chemical_compoundAgarMESH: AnimalsFood science0303 health sciencesbiologyplate media04 agricultural and veterinary sciencesMESH: Tetrazolium SaltsSolid mediumLactic acidMilkMESH: AgarBiochemistryLactobacillaceaeMESH : AgarFormazanOxidation-ReductionBiotechnologyfood.ingredientMESH: LactobacillaceaeSpot methodBioengineering03 medical and health sciencesfoodoxidoreduction potentialMixed culturereducing powerAnimalsLactic AcidMESH : Tetrazolium SaltsMESH : Oxidation-Reduction030306 microbiologyscreeningMESH : Lactobacillaceae0402 animal and dairy scienceOxidation reductionbiology.organism_classification040201 dairy & animal scienceCulture MediaMESH: Milklactic acid bacteriaAgarchemistryMESH : MilkMESH : Lactic AcidMESH: Culture MediaMESH: Lactic AcidMESH : Culture MediaMESH : Animals[SDV.AEN]Life Sciences [q-bio]/Food and NutritionBacteria
researchProduct

Oxidative stress in patients with Alzheimer's disease: Effect of extracts of fermented papaya powder

2015

Brain tissue is particularly susceptible to oxidative stress (OS). Increased production of reactive oxygen species (ROS), reduced antioxidant systems, and decreased efficiency in repairing mechanisms have been linked to Alzheimer’s disease (AD). Postmortem studies in AD patients’ brains have shown oxidative damage markers (i.e., lipid peroxidation, protein oxidative damage, and glycoxidation). Fermented papaya (FPP, a product ofCarica papaya Linnfermentation with yeast) is a nutraceutical supplement with favorable effects on immunological, hematological, inflammatory, and OS parameters in chronic/degenerative diseases. We studied 40 patients (age 78.2 ± 1.1 years), 28 AD patients, and 12 co…

MaleAntioxidantSettore MED/09 - Medicina Internamedicine.medical_treatmentReview Articlemedicine.disease_causeAntioxidantsLipid peroxidationchemistry.chemical_compoundchemistry.chemical_classificationAged 80 and overbiologyCaricaBrainBiochemistry8-Hydroxy-2'-DeoxyguanosineFemalePowdersCaricaAlzheimer's diseaseAntioxidantCase-Control StudieReactive Oxygen SpecieOxidation-Reductionlcsh:RB1-214Humanmedicine.medical_specialtyUrinary systemImmunologyPowderAlzheimer DiseaseInternal medicinemedicinelcsh:PathologyHumansAgedDietary SupplementReactive oxygen speciesCase-control studyDeoxyguanosineOxidative StrePlant PreparationCell Biologybiology.organism_classificationmedicine.diseaseAged; Aged 80 and over; Alzheimer Disease; Antioxidants; Brain; Carica; Case-Control Studies; Deoxyguanosine; Dietary Supplements; Female; Fermentation; Humans; Lipid Peroxidation; Male; Oxidation-Reduction; Oxygen; Plant Preparations; Powders; Reactive Oxygen Species; Oxidative Stress; Immunology; Cell BiologyOxygenOxidative StressEndocrinologychemistryCase-Control StudiesDietary SupplementsFermentationPlant PreparationsLipid PeroxidationReactive Oxygen SpeciesOxidative stress
researchProduct

A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARα-mediated upregulation of SREBP-2 target genes in the liver.: ThB …

2011

International audience; Peroxisomal 3-ketoacyl-CoA thiolase B (Thb) catalyzes the final step in the peroxisomal β-oxidation of straight-chain acyl-CoAs and is under the transcription control of the nuclear hormone receptor PPARα. PPARα binds to and is activated by the synthetic compound Wy14,643 (Wy). Here, we show that the magnitude of Wy-mediated induction of peroxisomal β-oxidation of radiolabeled (1-(14)C) palmitate was significantly reduced in mice deficient for Thb. In contrast, mitochondrial β-oxidation was unaltered in Thb(-/-) mice. Given that Wy-treatment induced Acox1 and MFP-1/-2 activity at a similar level in both genotypes, we concluded that the thiolase step alone was respons…

MaleMESH: HepatomegalyPalmitatesMESH : PyrimidinesMESH : Gene DeletionBiochemistryelement-binding proteinsMESH : Acetyl-CoA C-AcyltransferaseMiceMESH: Up-RegulationMESH: AnimalsMESH : Up-RegulationMESH: Lipid Metabolism0303 health sciencesMESH : Gene Expression RegulationThiolase030302 biochemistry & molecular biologyGeneral MedicineMESH : HepatomegalyUp-Regulationzellweger-syndromePeroxisome ProliferatorsMESH: Peroxisome ProliferatorsHepatomegalySterol Regulatory Element Binding Protein 2peroxisomal 3-ketoacyl-CoA thiolase BMESH: Mitochondria3-oxoacyl-coa thiolaseLathosterolfatty-acid oxidationrat-liverMESH: Sterol Regulatory Element Binding Protein 203 medical and health sciencesMESH : Sterol Regulatory Element Binding Protein 2HumansPPAR alphaMESH : Peroxisome Proliferators[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyPPARaVLAGMESH : Oxidation-ReductionFatty Acid Oxidation.MESH: HumansCholesterolMESH : HumanscholesterolLipid MetabolismMESH: PeroxisomesSterol regulatory element-binding proteinchemistryMESH: PyrimidinesCholesterol; Micro-array analysis; Peroxisomal 3-ketoacyl-CoA thiolase B; PPARα and SREBP-2; Wy14643Fatty Acid OxidationGene DeletionMESH: LiverMESH: Oxidation-ReductionMESH: Signal TransductionMESH: Mice KnockoutVoeding Metabolisme en Genomicachemistry.chemical_compoundMESH: CholesterolMESH : Lipid MetabolismWy14MESH : PalmitatesMESH: PPAR alphaMESH : CholesterolMice Knockoutneuronal migration643PeroxisomeAcetyl-CoA C-AcyltransferaseMESH: Gene Expression RegulationMetabolism and GenomicsMitochondriaLiverBiochemistryMicro-array analysisMetabolisme en GenomicaACOX1Nutrition Metabolism and GenomicsMESH : MitochondriaOxidation-ReductionSignal Transductionacyl-coa oxidasecholesterol-synthesisMESH : MaleMESH : PPAR alphaPeroxisome ProliferationPPARα and SREBP-2Biologybeta-oxidationVoedingproliferator-activated receptorsMESH : MicePeroxisomesAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Mice030304 developmental biologySCP2NutritionMESH : Signal TransductionMESH : LiverMESH: PalmitatesMESH: MalePyrimidinesMESH: Acetyl-CoA C-AcyltransferaseGene Expression RegulationMESH: Gene DeletionMESH : Mice KnockoutMESH : AnimalsMESH : Peroxisomes
researchProduct

Erythrocyte deformability, plasma lipid peroxidation and plasma protein oxidation in a group of OSAS subjects

2016

Considering that obstructive sleep apnea syndrome (OSAS) is usually associated with endothelial dysfunction, atherosclerosis and cardiovascular disorders, our aim was to examine the erythrocyte deformability and the oxidative status in a group of OSAS subjects. We consecutively enrolled 48 subjects with OSAS defined after a 1-night cardiorespiratory sleep study, subsequently subdivided according to the apnea/hypopnea index (AHI) value in two subgroups: Low (L = 21 subjects with AHI30) and High (H = 27 subjects with AHI30). We evaluated the erythrocyte deformability, expressed as elongation index (EI) and the parameters of the oxidative status, such as lipid peroxidation (expressed as thioba…

Malemedicine.medical_specialtyPhysiologyLipid peroxidation030204 cardiovascular system & hematologymedicine.disease_causeProtein oxidationBioinformaticsLipid peroxidation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBlood Proteinstomatognathic systemErythrocyte DeformabilityPhysiology (medical)Internal medicineErythrocyte deformability; Lipid peroxidation; OSAS; Protein oxidation; Blood Proteins; Erythrocyte Deformability; Female; Humans; Lipid Peroxidation; Male; Middle Aged; Oxidation-Reduction; Oxidative Stress; Sleep Apnea Obstructive; Physiology; Hematology; Cardiology and Cardiovascular Medicine; Physiology (medical)medicineTBARSHumansErythrocyte deformabilitySleep Apnea Obstructivebusiness.industryErythrocyte fragilityOSASOxidative StreBlood ProteinsHematologyMiddle Agedmedicine.diseaseBlood proteinsnervous system diseasesrespiratory tract diseasesOxidative StressEndocrinology030228 respiratory systemchemistryFemaleCardiology and Cardiovascular MedicinebusinessProtein oxidationOxidation-ReductionHypopneaOxidative stressHumanClinical Hemorheology and Microcirculation
researchProduct

Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs)

2014

Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 μM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.…

Neurotransmitters; Screen Printed Electrodes (SPEs); Selective detection; SWCNHs; Biosensing Techniques; Electrochemical Techniques; Electrodes; Epinephrine; Limit of Detection; Nanostructures; Oxidation-Reduction; Reproducibility of Results; Biophysics; Biomedical Engineering; Biotechnology; Electrochemistry; Medicine (all)NanostructureEpinephrineScreen Printed Electrodes (SPEs)ElectrodeBiophysicsAnalytical chemistryBiomedical EngineeringReproducibility of ResultBiosensing TechniquesElectrochemistryNanomaterialsSWCNHs; Screen Printed Electrodes (SPEs); Neurotransmitters; Selective detectionBiosensing TechniqueSelective detectionLimit of DetectionElectrochemistrySWCNHSettore CHIM/01 - Chimica AnaliticaNeurotransmitterElectrodesDetection limitSWCNHsReproducibilityElectrochemical TechniqueChemistryMedicine (all)Reproducibility of ResultsGeneral MedicineElectrochemical TechniquesNeurotransmittersAscorbic acidNanostructuresLinear rangeBiophysicElectrodeDifferential pulse voltammetryOxidation-ReductionNuclear chemistryBiotechnology
researchProduct

Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models for the study of peroxisomal disorders…

2009

International audience; In some neurodegenerative disorders (leukodystrophies) characterized by myelin alterations, the defect of peroxisomal functions on myelin-producing cells (oligodendrocytes) are poorly understood. The development of in vitro models is fundamental to understanding the physiopathogenesis of these diseases. We characterized two immortalized murine oligodendrocyte cell lines: a normal (158N) and a jimpy (158JP) cell line mutated for the proteolipid protein PLP/DM20. Fluorescence microscopy, flow cytometry, and western blotting analysis allow to identify major myelin proteins (PLP colocalizing with mitochondria; myelin basic protein), oligodendrocyte (CNPase and myelin oli…

Proteolipid protein 1BiochemistryMiceMyelinMESH : PhenylbutyratesperoxisomeIsomerasesMESH : Myelin Basic ProteinsEnoyl-CoA HydrataseCell Line TransformedUltrasonographybiologyMESH : Gene Expression RegulationMESH : Myelin Proteolipid Protein3-Hydroxyacyl CoA DehydrogenasesMESH : Myelin-Associated GlycoproteinMESH : Cell Line TransformedPeroxisomeMESH : Multienzyme ComplexesMESH : OligodendrogliaMESH : Enoyl-CoA HydrataseCatalaseFlow CytometryMESH : 3-Hydroxyacyl CoA DehydrogenasesPhenylbutyratesmitochondriaMyelin-Associated GlycoproteinOligodendrogliamyelinMESH : Antineoplastic Agentsmedicine.anatomical_structureMESH : Microscopy Electron TransmissionBiochemistryACOX1MESH : MitochondriaMESH : Acyl-CoA Oxidase2'3'-Cyclic-Nucleotide PhosphodiesterasesMESH : IsomerasesOxidation-ReductionMyelin ProteinsMESH : Flow CytometryAntineoplastic AgentsPeroxisomal Bifunctional EnzymeStatistics NonparametricMyelin oligodendrocyte glycoproteinCellular and Molecular NeuroscienceMicroscopy Electron TransmissionMultienzyme ComplexesMESH : CatalaseMESH : MicePeroxisomesmedicineAnimalsMESH : ATP-Binding Cassette TransportersMyelin Proteolipid ProteinMESH : Statistics Nonparametric[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH : Oxidation-ReductionMyelin Basic Proteinmurine oligodendrocytesMESH : 2'3'-Cyclic-Nucleotide PhosphodiesterasesPeroxisomal transportOligodendrocyteMyelin basic proteinGene Expression Regulationbiology.proteinATP-Binding Cassette TransportersMyelin-Oligodendrocyte GlycoproteinAcyl-CoA OxidaseMESH : AnimalsMESH : Peroxisomes
researchProduct

Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs

2004

Ischemia-reperfusion injury, a clinical problem during cardiac surgery, involves worsened adenosine trisphosphate (ATP) generation and damage to the heart. We studied carbon monoxide ( CO) pretreatment, proven valuable in rodents but not previously tested in large animals, for its effects on pig hearts subjected to cardiopulmonary bypass with cardioplegic arrest. Hearts of CO-treated pigs showed significantly higher ATP and phosphocreatine levels, less interstitial edema, and apoptosis of cardiomyocytes and required fewer defibrillations after bypass. We conclude that treatment with CO improves the energy status, prevents edema formation and apoptosis, and facilitates recovery in a clinical…

Sus scrofaMyocardial IschemiaApoptosisCardiotonic AgentsBiochemistrylaw.inventionchemistry.chemical_compoundAdenosine Triphosphateischemia reperfusion; heart arrest; apoptosis; hypoxia; Adenosine Diphosphate; Adenosine Monophosphate; Adenosine Triphosphate; Animals; Apoptosis; Carbon Monoxide; Cardiotonic Agents; Edema; Electric Countershock; Energy Metabolism; Female; Guanosine Triphosphate; Heart; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocytes Cardiac; NAD; NADP; Oxidation-Reduction; Sus scrofa; Cardiopulmonary BypasslawEdemaEdemaMyocytes CardiacCarbon MonoxideCardiopulmonary BypassMED/04 - PATOLOGIA GENERALEHeartCardiac surgeryAdenosine DiphosphateAnesthesiaCardiologyFemaleGuanosine Triphosphatemedicine.symptomCardiacOxidation-ReductionBiotechnologymedicine.drugischemia reperfusion; heart arrest; apoptosis; hypoxiaAdenosine monophosphatemedicine.medical_specialtyCardiotonic AgentsElectric CountershockMyocardial Reperfusion InjuryPhosphocreatineInternal medicineGeneticsmedicineCardiopulmonary bypassischemia reperfusionAnimalsMolecular BiologyMyocytesbusiness.industryhypoxiaNADAdenosineapoptosiAdenosine MonophosphateAdenosine diphosphatechemistryEnergy MetabolismbusinessNADPheart arrest
researchProduct

Effect of environmental conditions on the durability of polycarbonate for the protection of cultural heritage sites.

2019

Polycarbonate is a good material for covering and protecting cultural heritage sites because of its durability, mechanical properties, and transparency. However, polycarbonate degrades under environmental weathering with a significant decrease of physical and mechanical properties and loss of transparency. In this work, the contemporary presence of ultraviolet irradiation and different temperature and moisture conditions have been taken into account to study the environmental degradation of this polymer with regard to its mechanical and optical properties. The photo-oxidation reactions cause a decrease in the molecular weight and the formation of many oxygenated species. The hydrolytic sci…

Time FactorsUltraviolet Rayslcsh:BiotechnologyCultural heritage durability environmental weathering polycarbonate Humidity Oxidation-Reduction Polycarboxylate Cement Time Factors Ultraviolet RaysBiomedical EngineeringBiophysicsBioengineering02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsEnvironmental protectionlcsh:TP248.13-248.65environmental weatheringPolycarbonatePolycarboxylate CementHumidityGeneral Medicine021001 nanoscience & nanotechnologyDurabilityTransparency (behavior)0104 chemical sciencesCultural heritageSettore ING-IND/22 - Scienza E Tecnologia Dei Materialipolycarbonatevisual_artvisual_art.visual_art_mediumCultural heritage; durability; environmental weathering; polycarbonateCultural heritagedurabilityBusiness0210 nano-technologyOxidation-ReductionJournal of applied biomaterialsfunctional materials
researchProduct