Search results for " Packing"

showing 10 items of 99 documents

Brownian dynamics of polydisperse colloidal hard spheres: Equilibrium structures and random close packings

1994

Recently we presented a new technique for numerical simulations of colloidal hard-sphere systems and showed its high efficiency. Here, we extend our calculations to the treatment of both 2- and 3-dimensional monodisperse and 3-dimensional polydisperse systems (with sampled finite Gaussian size distribution of particle radii), focusing on equilibrium pair distribution functions and structure factors as well as volume fractions of random close packing (RCP). The latter were determined using in principle the same technique as Woodcock or Stillinger had used. Results for the monodisperse 3-dimensional system show very good agreement compared to both pair distribution and structure factor predic…

Condensed Matter::Soft Condensed MatterPhase transitionDistribution functionMaterials scienceRandom close packVolume fractionBrownian dynamicsThermodynamicsStatistical and Nonlinear PhysicsHard spheresAtomic packing factorStructure factorMathematical PhysicsJournal of Statistical Physics
researchProduct

Phase transitions and phase equilibria in spherical confinement

2013

Phase transitions in finite systems are rounded and shifted and affected by boundary effects due to the surface of the system. This interplay of finite size and surface effects for fluids confined inside of a sphere of radius $R$ is studied by a phenomenological theory and Monte Carlo simulations of a model for colloid-polymer mixtures. For this system the phase separation in a colloid-rich phase and a polymer-rich phase has been previously studied extensively in the bulk. It is shown that spherical confinement can strongly enhance the miscibility of the mixture. Depending on the wall potentials at the confining surface, the wetting properties of the wall can be controlled, and this interpl…

Condensed Matter::Soft Condensed MatterQuantum phase transitionsymbols.namesakePhase transitionMaterials scienceCondensed matter physicsPhase (matter)symbolsRadiusWettingAtomic packing factorKelvin equationCritical exponentPhysical Review E
researchProduct

Frustration of structural fluctuations upon equilibration of shear melts

2002

Abstract We report on the formation of amorphous solids from aquaeous suspensions of charged colloidal spheres. Comprehensive light scattering and microscopic studies show that in these systems the nucleation rate density continuously increases to very high values. At the highest particle densities of 47.5 μm −3 (packing fraction Φ =0.146) an amorphous state is observed of only short range order, finite static shear modulus and frozen long time dynamics. This state is composed of a piling of––as we propose pre-critical––nuclei. Differences from the Hard Sphere case are discussed in some detail. There the arrest of density fluctuations is observed and described by Mode Coupling scenarios. In…

Condensed matter physicsChemistrymedia_common.quotation_subjectNucleationFrustrationHard spheresCondensed Matter PhysicsAtomic packing factorLight scatteringElectronic Optical and Magnetic MaterialsAmorphous solidCondensed Matter::Soft Condensed MatterShear modulusChemical physicsMetastabilityMaterials ChemistryCeramics and Compositesmedia_commonJournal of Non-Crystalline Solids
researchProduct

Glass transition of hard spheres in high dimensions

2009

We have investigated analytically and numerically the liquid-glass transition of hard spheres for dimensions $d\to \infty $ in the framework of mode-coupling theory. The numerical results for the critical collective and self nonergodicity parameters $f_{c}(k;d) $ and $f_{c}^{(s)}(k;d) $ exhibit non-Gaussian $k$ -dependence even up to $d=800$. $f_{c}^{(s)}(k;d) $ and $f_{c}(k;d) $ differ for $k\sim d^{1/2}$, but become identical on a scale $k\sim d$, which is proven analytically. The critical packing fraction $\phi_{c}(d) \sim d^{2}2^{-d}$ is above the corresponding Kauzmann packing fraction $\phi_{K}(d)$ derived by a small cage expansion. Its quadratic pre-exponential factor is different fr…

Condensed matter physicsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesGeometryScale (descriptive set theory)Hard spheresCondensed Matter - Soft Condensed MatterAtomic packing factorQuadratic equationExponentSoft Condensed Matter (cond-mat.soft)Glass transitionCritical exponentCondensed Matter - Statistical MechanicsMathematics
researchProduct

Controlling molecular packing for charge transport in organic thin film devices

2012

Controlling molecular packingSettore CHIM/02 - Chimica Fisica
researchProduct

Hard-sphere fluids in annular wedges: density distributions and depletion potentials.

2009

We analyze the density distribution and the adsorption of solvent hard spheres in an annular slit formed by two large solute spheres or a large solute and a wall at close distances by means of fundamental measure density functional theory, anisotropic integral equations and simulations. We find that the main features of the density distribution in the slit are described by an effective, two--dimensional system of disks in the vicinity of a central obstacle. For large solute--solvent size ratios, the resulting depletion force has a straightforward geometrical interpretation which gives a precise "colloidal" limit for the depletion interaction. For intermediate size ratios 5...10 and high sol…

Depletion forceMaterials science: Physics [G04] [Physical chemical mathematical & earth Sciences]FOS: Physical sciencesHard spheresCondensed Matter - Soft Condensed MatterAtomic packing factorIntegral equationSolventCondensed Matter::Soft Condensed MatterColloidClassical mechanics: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Chemical physicsSoft Condensed Matter (cond-mat.soft)SPHERESAnisotropyPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

The Poisson Ratio in CoFe2O4Spinel Thin Films

2012

The response of epitaxial CoFe2O4 thin films to biaxial compressive stress imposed by MgAl2O4 and SrTiO3 single crystalline substrates is studied using X-ray diffraction and Raman spectroscopy. It is found that the Poisson ratio ν signals a non-auxetic behavior and depends on the substrate used. The Raman modes show an increase in frequency when increasing compressive strain by reducing film thickness; this is due to the shrinking of the unit cell volume. Such behavior is in qualitative agreement with recent ab initio calculations, although the measured values are significantly smaller than predictions. In contrast, the measured Poisson ratio is found to be in good agreement with expectatio…

DiffractionMaterials scienceCondensed matter physicsAuxeticsSpinelMineralogyengineering.materialCondensed Matter PhysicsPoisson's ratioElectronic Optical and Magnetic MaterialsBiomaterialsCondensed Matter::Materials Sciencesymbols.namesakeSphere packingAb initio quantum chemistry methodsElectrochemistrysymbolsengineeringThin filmRaman spectroscopyAdvanced Functional Materials
researchProduct

Dissecting the packing forces in mixed perfluorocarbon/aromatic co-crystals

2021

We carried out a systematic evaluation of the packing forces in co-crystals featuring monoiodo- and diiodo-perfluoroalkanes and 1,2,4-oxadiazoles through single crystal X-ray diffraction and theoretical analysis. The molecules assemble via a combination of halogen bonding and specific dispersive interactions involving the perfluorinated units. We quantitatively elucidated the nature and strength of such interactions through solid-state calculations and Hirshfeld surface analysis. One of the co-crystals, formed by two monoiodoperfluorodecane molecules, the longest perfluorinated chain ever solved at the atomic level, allowed us to fully highlight the role of fluorous interactions.

DiffractionMaterials scienceHalogen bondperfluorocarbonSettore CHIM/06 - Chimica OrganicaGeneral ChemistryCondensed Matter PhysicsmodellingCrystallographyChain (algebraic topology)crystal engineeringMoleculehalogen bondGeneral Materials Sciencehalogen bonding supramolecular interactions crystal packingSingle crystalCrystEngComm
researchProduct

Noise-Assisted Crystallization of Opal Films

2012

International audience; An improvement of the crystal quality of opal fi lms self-assembled from polymer spheres in a moving meniscus using the agitation by white noise acoustic vibrations is demonstrated. A tenfold higher ordering of a hexagonal sphere packing in the (111) plane is achieved. This crystallization method, the mechanism of which is described in terms of the stochastic resonance, is a contrast to the widely used approach based on maintaining equilibrium conditions during the crystallization process. The precise quantifi cation of the incremental lattice order improvement as a function of acoustic noise intensity is achieved by calculating the probability of finding an opposite…

DiffractionMaterials scienceRotational symmetry02 engineering and technology01 natural scienceslaw.inventionBiomaterialssymbols.namesakeOpticslawLattice (order)0103 physical sciencesElectrochemistry[CHIM.CRIS]Chemical Sciences/CristallographyCrystallization010306 general physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Condensed matter physicsbusiness.industryWhite noise021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsNoiseSphere packingFourier transformsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusiness
researchProduct

High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiati…

2010

Room-temperature angle-dispersive x-ray diffraction measurements on zircon-type ${\text{YPO}}_{4}$ and ${\text{ErPO}}_{4}$, and monazite-type ${\text{GdPO}}_{4}$, ${\text{EuPO}}_{4}$, ${\text{NdPO}}_{4}$, and ${\text{LaPO}}_{4}$ were performed in a diamond-anvil cell up to 30 GPa using neon as pressure-transmitting medium. In the zircon-structured oxides we found evidence of a reversible pressure-induced structural phase transformation from zircon to a monazite-type structure. The onset of the transition is at 19.7 GPa in ${\text{YPO}}_{4}$ and 17.3 GPa in ${\text{ErPO}}_{4}$. In ${\text{LaPO}}_{4}$ a nonreversible transition is found at 26.1 GPa and a barite-type structure is proposed for …

DiffractionPhase transitionMaterials sciencechemistry.chemical_elementCondensed Matter PhysicsAtomic packing factorElectronic Optical and Magnetic MaterialsCrystallographyNeonchemistryPhase (matter)X-ray crystallographyCompressibilityAnisotropyPhysical Review B
researchProduct