Search results for " Parti"

showing 10 items of 9465 documents

High Gradient Performance of an S-Band Backward Traveling Wave Accelerating Structure for Medical Hadron Therapy Accelerators

2018

The high-gradient performance of an accelerating structure prototype for a medical proton linac is presented. The structure was designed and built using technology developed by the CLIC collaboration and the target application is the TULIP (Turning Linac for Proton therapy) proposal developed by the TERA foundation. The special feature of this design is to produce gradient of more than 50 MV /m in low-β accelerating structures (v/c=0.38). The structure was tested in an S-band test stand at CERN. During the tests, the structure reached over above 60 MV/m at 1.2 μs pulse length and breakdown rate of about 5x10⁻⁶ bpp. The results presented include ultimate performance, long term behaviour and …

010308 nuclear & particles physicsU01 Medical Applications[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]08 Applications of Accelerators Tech Transfer and Industrial RelationscavityAccelerators and Storage Rings01 natural sciencesAccelerator Physicsradiation0103 physical scienceslinac010306 general physicsaccelerating-gradientproton
researchProduct

Measurement of the laser resonance ionization efficiency for lutetium

2019

Abstract The development of a highly efficient resonance ionization scheme for lutetium is presented. A laser ion source, based on the all-solid-state Titanium:sapphire laser system, was used at the 30 keV RISIKO off-line mass separator to characterize different possible optical excitation schemes in respect to their ionization efficiency. The developed laser resonance ionization scheme can be directly applied to the use at radioactive ion beam facilities, e. g. at the CERN-MEDICIS facility, for large-scale production of medical radioisotopes.

010308 nuclear & particles physicschemistry.chemical_elementMass spectrometry01 natural sciencesLutetiumIsotope separationlaw.inventionchemistrylawIonization0103 physical sciencesSapphireLaser resonancePhysics::Atomic PhysicsPhysical and Theoretical ChemistryAtomic physics010306 general physicsSpectroscopyRadiochimica Acta
researchProduct

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence for shock-cloud interaction

2017

The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS gamma-ray source HESS J1852-000. The X-ray emission from the remnant has been recently revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra, possibly associated with synchrotron radiation. We aim at describing the spatial distribution of the physical properties of the X-ray emitting plasma and at revealing the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also aim at investigating the origin of the gamma-ray emission, which may be Inverse Compton radiation associated wi…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaHadronSynchrotron radiationFOS: Physical sciencesElectronAstrophysicsISM: individual objects: Kes 7801 natural sciencesSpectral linelaw.inventionlawISM: cloud0103 physical sciencesSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Molecular cloudAstronomy and AstrophysicsPlasmaAstronomy and AstrophysicAcceleration of particleSynchrotronX-rays: ISM13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

2020

Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyPulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstronomy and AstrophysicsGalactic planeCOSMIC-RAYSCRAB-NEBULACrab NebulaPhysics and AstronomyNeutrino astronomy13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESDISCOVERYPhysique des particules élémentairesHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsGAMMA-RAY EMISSIONLepton
researchProduct

A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

2020

Abstract High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong var…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectmodel [emission]FOS: Physical sciencesCosmic rayAstrophysics01 natural scienceslaw.inventionIceCube Neutrino ObservatoryIceCubeblazarlawemission [gamma ray]0103 physical sciencesCosmic ray sources; High-energy astrophysics; Particle astrophysicsenergy: high [neutrino]Blazar010303 astronomy & astrophysics0105 earth and related environmental sciencesmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstroparticle physicsPhysicsbackgroundAstronomy and AstrophysicsCosmic ray sourcesUniverseHigh-energy astrophysicsmessengerobservatorySpace and Planetary Scienceddc:520time dependenceacceleration [cosmic radiation]NeutrinoAstrophysics - High Energy Astrophysical PhenomenaParticle astrophysicsFlare
researchProduct

Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

2008

Abstract. The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for …

010504 meteorology & atmospheric sciencesIndoor bioaerosollcsh:LifeBiological particles[SDU.STU]Sciences of the Universe [physics]/Earth SciencesNanotechnology[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]03 medical and health scienceslcsh:QH540-549.5[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface Processes[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere0303 health sciences[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.OCEAN] Sciences of the Universe [physics]/Ocean Atmosphere030306 microbiologyChemistrylcsh:QE1-996.5[SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces environmentAerosolCharacterization (materials science)lcsh:Geologylcsh:QH501-531[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]13. Climate action[SDU.STU] Sciences of the Universe [physics]/Earth SciencesIce nucleuslcsh:EcologyBiochemical engineeringAerosol sampling
researchProduct

On the Dependence of Cirrus Parametrizations on the Cloud Origin

2019

<p>Particle size distributions (PSDs) for cirrus clouds are important for both climate models as well as many remote sensing retrieval methods. Therefore, PSD parametrizations are required. This study presents parametrizations of Arctic cirrus PSDs. The dataset used for this purpose originates from balloon-borne measurements carried out during winter above Kiruna (Sweden), i.e. north of the Arctic circle. The observations are sorted into two types of cirrus cloud origin, either in-situ or liquid. The cloud origin describes the formation pathway of the ice particles. At temperatures below −38 °C, ice particles form in-situ from solution or ice nuclea…

010504 meteorology & atmospheric sciencesMeteorologyMeteorologi och atmosfärforskningAerospace EngineeringCloud computing010502 geochemistry & geophysics01 natural sciencescirrus cloudsddc:550Parametrization (atmospheric modeling)Astrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsparametrizationData setRymd- och flygteknikGeophysicsArcticice particle size distribution (PSD)Meteorology and Atmospheric SciencesPhysics::Space PhysicsGeneral Earth and Planetary SciencesEnvironmental scienceCirrusbusinessArctic cloud origin
researchProduct

Long-term stability of alpha particle damage in natural zircon

2005

Abstract We report the first discovery of radiation damage haloes generated by alpha particles in zircon. Proterozoic zircon crystals from a potassium-rich leucogranite from the Adirondack Mountains, New York State, have interior regions that are generally low in actinide elements (UO 2  + ThO 2  ≤ 0.02 wt.%) but show a remarkable pattern of heterogeneous metamictisation. The degree of radiation damage in these regions is not uniformly low, as would be expected if it corresponded to the observed actinide distribution patterns and age of the crystals. Rather, radiation damage is significantly increased in the outermost micro-areas of the low-actinide regions. The additional radiation damage …

010504 meteorology & atmospheric sciencesMineralogyGeologyAlpha particleengineering.material010502 geochemistry & geophysics01 natural sciencesCrystallographic defectMolecular physicsLeucograniteMetamictizationGeochemistry and PetrologyRadiation damageengineeringFrenkel defectBiotiteGeology0105 earth and related environmental sciencesZirconChemical Geology
researchProduct

Ray optics for absorbing particles with application to ice crystals at near-infrared wavelengths

2018

Abstract Light scattering by particles large compared to the wavelength of incident light is traditionally solved using ray optics which considers absorption inside the particle approximately, along the ray paths. To study the effects rising from this simplification, we have updated the ray-optics code SIRIS to take into account the propagation of light as inhomogeneous plane waves inside an absorbing particle. We investigate the impact of this correction on traditional ray-optics computations in the example case of light scattering by ice crystals through the extended near-infrared (NIR) wavelength regime. In this spectral range, ice changes from nearly transparent to opaque, and therefore…

010504 meteorology & atmospheric sciencesOpacityspektroskopiaIce crystalsPhysics::OpticsRay optics01 natural sciencesPOLARIZED-LIGHT SCATTERING114 Physical sciencesLight scattering010309 opticsScatteringMEDIAOptics0103 physical sciencesABSORPTIONInhomogeneous wavesCIRRUSray opticsSpectroscopy0105 earth and related environmental sciencesPhysicsta113absorbing mediaRadiationta115Geometrical opticsIce crystalsta114Scatteringbusiness.industryscatteringCLOUDSkiteetRayAtomic and Molecular Physics and OpticsoptiikkaSOLAR-RADIATIONWavelengthMAXWELLS EQUATIONSAbsorbing mediainhomogeneous wavesLight scattering by particlesPHASE MATRIXGEOMETRIC-OPTICSbusinessice crystalsAPPROXIMATION
researchProduct