Search results for " Pd"

showing 10 items of 651 documents

Determining a Random Schrödinger Operator : Both Potential and Source are Random

2020

We study an inverse scattering problem associated with a Schr\"odinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a proper sense. We then derive two unique recovery results in determining the rough strengths of the random source and the random potential, by using the corresponding far-field data. The first recovery result shows that a single realization of the passive scattering measurements uniquely recovers the rough strength of the random source. The second one shows that, by a single realization of the backscattering data, the rough strength of the random potential can be recovered…

Complex systemMicrolocal analysis01 natural sciencesinversio-ongelmatsähkömagneettinen säteilysymbols.namesakeOperator (computer programming)Mathematics - Analysis of PDEs0103 physical sciencessironta0101 mathematicsMathematical PhysicsMathematics35Q60 35J05 31B10 35R30 78A40osittaisdifferentiaaliyhtälötScattering010102 general mathematicsMathematical analysisErgodicityStatistical and Nonlinear PhysicsInverse scattering problemsymbols010307 mathematical physicsmatemaattiset mallitRealization (probability)Schrödinger's cat
researchProduct

Local regularity for time-dependent tug-of-war games with varying probabilities

2016

We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain H\"older and Harnack estimates. The games have a connection to the normalized $p(x,t)$-parabolic equation $(n+p(x,t))u_t=\Delta u+(p(x,t)-2) \Delta_{\infty}^N u$.

Computer Science::Computer Science and Game TheoryPure mathematicsparabolic p(xTug of warMathematics::Analysis of PDEsHölder condition01 natural sciencesMathematics - Analysis of PDEsFOS: Mathematicsstochastic gamestug-of-war0101 mathematicsConnection (algebraic framework)Harnack's inequalityMathematicsHarnack inequalitySpacetimeHölder continuityApplied Mathematicsta111010102 general mathematicsLipschitz continuity010101 applied mathematicst)-LaplacianConstant (mathematics)AnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct

Resonances over a potential well in an island

2020

In this paper we study the distribution of scattering resonances for a multidimensional semi-classical Schr\"odinger operator, associated to a potential well in an island at energies close to the maximal one that limits the separation of the well and the surrounding sea.

Condensed Matter::Quantum GasesDistribution (number theory)Condensed Matter::OtherScatteringGeneral MathematicsOperator (physics)FOS: Physical sciencesMathematical Physics (math-ph)Mathematics::Spectral TheoryCondensed Matter::Mesoscopic Systems and Quantum Hall Effectsymbols.namesakeMathematics - Analysis of PDEsQuantum mechanicssymbolsFOS: Mathematics35J10 35B34 35P20 47A55Schrödinger's catMathematical PhysicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Exact controllability to trajectories for entropy solutions to scalar conservation laws in several space dimensions

2019

We describe a new method which allows us to obtain a result of exact controllability to trajectories of multidimensional conservation laws in the context of entropy solutions and under a mere non-degeneracy assumption on the flux and a natural geometric condition.

Conservation law010102 general mathematicsGeneral Medicine01 natural sciencesControllabilityMathematics - Analysis of PDEsOptimization and Control (math.OC)0103 physical sciencesFOS: MathematicsApplied mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]010307 mathematical physics[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsEntropy (arrow of time)Mathematics - Optimization and ControlMathematicsAnalysis of PDEs (math.AP)
researchProduct

Symmetry breaking in a constrained cheeger type isoperimetric inequality

2015

We study the optimal constant in a Sobolev inequality for BV functions with zero mean value and vanishing outside a bounded open set. We are interested in finding the best possible embedding constant in terms of the measure of the domain alone. We set up an optimal shape problem and we completely characterize the behavior of optimal domains.

Control and OptimizationOptimal shapeZero (complex analysis)Symmetry and asymmetryMeasure (mathematics)Sobolev inequalityCheeger inequalityCombinatoricsComputational MathematicsMathematics - Analysis of PDEsOptimization and Control (math.OC)Control and Systems EngineeringSettore MAT/05 - Analisi MatematicaFOS: MathematicsExponentSymmetry breakingIsoperimetric inequalitySymmetry (geometry)Constant (mathematics)Mathematics - Optimization and ControlAnalysis of PDEs (math.AP)Mathematics
researchProduct

Quasilinear Dirichlet Problems with Degenerated p-Laplacian and Convection Term

2021

The paper develops a sub-supersolution approach for quasilinear elliptic equations driven by degenerated p-Laplacian and containing a convection term. The presence of the degenerated operator forces a substantial change to the functional setting of previous works. The existence and location of solutions through a sub-supersolution is established. The abstract result is applied to find nontrivial, nonnegative and bounded solutions.

Convectionsub-supersolutionGeneral MathematicsOperator (physics)quasilinear elliptic problemlcsh:MathematicsMathematical analysisMathematics::Analysis of PDEsnonnegative solutionlcsh:QA1-939Dirichlet distributionTerm (time)symbols.namesakedegenereted p-LaplacianSettore MAT/05 - Analisi MatematicaBounded functionComputer Science (miscellaneous)p-Laplaciansymbolsconvection termEngineering (miscellaneous)MathematicsMathematics
researchProduct

Convex functions on Carnot Groups

2007

We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.

Convex analysisPure mathematicsCarnot groupsubelliptic equations.49L25Mathematics::Complex VariablesGeneral MathematicsMathematical analysissubelliptic equationsMathematics::Analysis of PDEsHorizontal convexityviscosity convexity35J70Convexitysymbols.namesakeCarnot groupsHomogeneous35J67Convex optimizationsymbolsPoint (geometry)Carnot cycleConvex function22E30Mathematics
researchProduct

Monotonicity and enclosure methods for the p-Laplace equation

2018

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

Convex hull35R30 (Primary) 35J92 (Secondary)EnclosurePerturbation (astronomy)Monotonic function01 natural sciencesConstructiveMathematics - Analysis of PDEsEnclosure methodFOS: Mathematics0101 mathematicsMathematicsInclusion detectionMonotonicity methodLaplace's equationmonotonicity methodApplied Mathematics010102 general mathematicsMathematical analysista111inclusion detection010101 applied mathematicsNonlinear systemMonotone polygonp-Laplace equationAnalysis of PDEs (math.AP)enclosure method
researchProduct

Enclosure method for the p-Laplace equation

2014

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

Convex hullGeneralization35R30 (Primary) 35J92 (Secondary)EnclosureMathematics::Classical Analysis and ODEsInverseMonotonic function01 natural sciencesTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsLaplace's equationMathematics::Functional AnalysisCalderón problemApplied Mathematics010102 general mathematicsMathematical analysisComputer Science Applications010101 applied mathematicsNonlinear systemSignal ProcessingJumpp-Laplace equationenclosure methodAnalysis of PDEs (math.AP)
researchProduct

Numerical Study of the semiclassical limit of the Davey-Stewartson II equations

2014

We present the first detailed numerical study of the semiclassical limit of the Davey–Stewartson II equations both for the focusing and the defocusing variant. We concentrate on rapidly decreasing initial data with a single hump. The formal limit of these equations for vanishing semiclassical parameter , the semiclassical equations, is numerically integrated up to the formation of a shock. The use of parallelized algorithms allows one to determine the critical time tc and the critical solution for these 2 + 1-dimensional shocks. It is shown that the solutions generically break in isolated points similarly to the case of the 1 + 1-dimensional cubic nonlinear Schrodinger equation, i.e., cubic…

Critical timeOne-dimensional spaceGeneral Physics and AstronomySemiclassical physicsFOS: Physical sciences01 natural sciences010305 fluids & plasmassymbols.namesakeMathematics - Analysis of PDEsSquare root0103 physical sciencesFOS: Mathematics0101 mathematicsNonlinear Schrödinger equationScalingNonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsMathematicsNonlinear Sciences - Exactly Solvable and Integrable SystemsApplied Mathematics010102 general mathematicsMathematical analysisStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Norm (mathematics)symbolsGravitational singularityExactly Solvable and Integrable Systems (nlin.SI)Analysis of PDEs (math.AP)
researchProduct