Search results for " Pd"
showing 10 items of 651 documents
Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux
2016
We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks, such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic. Constraints are defined based on data collected from non-local in space and/or in time observations of the flow. We propose a theoretical analysis and discretization framework that permits to include different data acquisition strategies; a numerical comparison is provided. Nonlocal constraint allows to model, e.g., the irrational behavior (" panic ") near the exit observed in dense crowds and the capacity drop at tollbooth in vehicular traffic. Existence …
γδ T cell-based anticancer immunotherapy: Progress and possibilities
2015
High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex
2013
Abstract We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 103–105, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 104–105. We also investi…
Lower semicontinuity of weak supersolutions to the porous medium equation
2013
Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that nonnegative weak supersolutions become lower semicontinuous after redefinition on a set of measure zero. This shows that weak supersolutions belong to a class of supersolutions defined by a comparison principle.
Boundary behavior of quasi-regular maps and the isodiametric profile
2001
We study obstructions for a quasi-regular mapping f : M → N f:M\rightarrow N of finite degree between Riemannian manifolds to blow up on or collapse on a non-trivial part of the boundary of M M .
eta1-Allypalladium complexes with tridentate PNP’ ligand for the assembly of modified Screen Printed Electrodes: an electrochemical study.
2015
Specific Pd-based organometallic complex, in particular the [Pd(η1-CH2–CH=CH2)(P–N–P’)]BF4 was used for the assembly of chemically modified Screen Printed Electrodes (SPEs) and their electrochemical reactivity was also investigated. For this purpose potassium ferricyanide, hexaammineruthenium(III) chloride, sodium hexachloroiridate-(III) hydrate, ascorbic acid (AA), uric acid (UA), acetaminophen (Ac), guanine (G) and adenine (A) were used to study the electron-transfer processes, which occurred at modified SPEs, fabricated by using the [Pd(η1-CH2–CH=CH2)(P–N–P’)]BF4, applying the drop casting procedure. Interesting results were obtained in the case of the guanine (G) quantitative detection,…
On critical behaviour in generalized Kadomtsev-Petviashvili equations
2016
International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…
Elliptic equations involving the $1$-Laplacian and a subcritical source term
2017
In this paper we deal with a Dirichlet problem for an elliptic equation involving the $1$-Laplacian operator and a source term. We prove that, when the growth of the source is subcritical, there exist two bounded nontrivial solutions to our problem. Moreover, a Pohozaev type identity is proved, which holds even when the growth is supercritical. We also show explicit examples of our results.
Perron's method for the porous medium equation
2016
O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0
A non-homogeneous elliptic problem dealing with the level set formulation of the inverse mean curvature flow
2015
Abstract In the present paper we study the Dirichlet problem for the equation − div ( D u | D u | ) + | D u | = f in an unbounded domain Ω ⊂ R N , where the datum f is bounded and nonnegative. We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz-continuous. This problem is the non-homogeneous extension of the level set formulation of the inverse mean curvature flow in a Euclidean space. We introduce a suitable concept of weak solution, for which we prove existence, uniqueness and a comparison principle.