Search results for " Pd"

showing 10 items of 651 documents

Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux

2016

We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks, such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic. Constraints are defined based on data collected from non-local in space and/or in time observations of the flow. We propose a theoretical analysis and discretization framework that permits to include different data acquisition strategies; a numerical comparison is provided. Nonlocal constraint allows to model, e.g., the irrational behavior (" panic ") near the exit observed in dense crowds and the capacity drop at tollbooth in vehicular traffic. Existence …

Crowd dynamicsMathematical optimizationFixed point argumentsDiscretizationGeneral MathematicsScalar (mathematics)Crowd dynamics; Finite volume approximation; Nonlocal point constraint; Scalar conservation law; Vehicular traffics; Well-posedness; Mathematics (all); Applied Mathematics01 natural sciencesMSC : 35L65 90B20 65M12 76M12NONonlocal point constraintCrowdsData acquisitionMathematics (all)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]DoorsUniqueness[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalar conservation lawMathematicsConservation lawVehicular trafficsFinite volume methodApplied Mathematics010102 general mathematics[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]010101 applied mathematicsWell-posednessFinite volume schemeFinite volume approximationConvergence of approximations[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Journal de Mathématiques Pures et Appliquées
researchProduct

γδ T cell-based anticancer immunotherapy: Progress and possibilities

2015

Cytotoxicity Immunologicmedicine.medical_treatmentT cellT-LymphocytesImmunologyImmunotherapy AdoptiveInterferon-gammaNeoplasmsTumor MicroenvironmentImmunology and AllergyMedicineAnimalsHumansSettore MED/04 - Patologia GeneraleTumor microenvironmentTumor-infiltrating lymphocytesbusiness.industryInterleukin-17Neoplasms therapyReceptors Antigen T-Cell gamma-deltaImmunotherapymedicine.anatomical_structureγδ T cells • cancer • IFN-γ • IL-17 • immunotherapy • PD-1 • tumor-infiltrating lymphocytesOncologyImmunologySettore MED/46 - Scienze Tecniche Di Medicina Di Laboratoriobusiness
researchProduct

High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex

2013

Abstract We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 103–105, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 104–105. We also investi…

D'Alembert's paradoxGeneral Computer SciencePrandtl numberMathematics::Analysis of PDEsFOS: Physical sciencesPhysics::Fluid Dynamicssymbols.namesakeMathematics - Analysis of PDEsHagen–Poiseuille flow from the Navier–Stokes equationsFOS: MathematicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical analysisGeneral EngineeringFluid Dynamics (physics.flu-dyn)Reynolds numberPhysics - Fluid DynamicsMathematical Physics (math-ph)Non-dimensionalization and scaling of the Navier–Stokes equationsBoundary layersymbolsTurbulent Prandtl numberReynolds-averaged Navier–Stokes equationsBoundary layer Unsteady separation Navier Stokes solutions Prandtl’s equation High Reynolds number flows.Analysis of PDEs (math.AP)
researchProduct

Lower semicontinuity of weak supersolutions to the porous medium equation

2013

Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that nonnegative weak supersolutions become lower semicontinuous after redefinition on a set of measure zero. This shows that weak supersolutions belong to a class of supersolutions defined by a comparison principle.

Degenerate diffusion35K55 31C45Applied MathematicsGeneral MathematicsMathematical analysista111Mathematics::Analysis of PDEscomparison principlelower semicontinuitysupersolutionsMathematics - Analysis of PDEsporous medium equationFOS: MathematicsPorous mediumdegenerate diffusionSign (mathematics)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Boundary behavior of quasi-regular maps and the isodiametric profile

2001

We study obstructions for a quasi-regular mapping f : M → N f:M\rightarrow N of finite degree between Riemannian manifolds to blow up on or collapse on a non-trivial part of the boundary of M M .

Degree (graph theory)Mathematical analysisMathematics::Analysis of PDEsBoundary (topology)Collapse (topology)GeometryGeometry and TopologyMathematics::Differential GeometryMathematics::Geometric TopologyMathematics::Symplectic GeometryBoundary behavior.Quasi-regular mappingsMathematics
researchProduct

eta1-Allypalladium complexes with tridentate PNP’ ligand for the assembly of modified Screen Printed Electrodes: an electrochemical study.

2015

Specific Pd-based organometallic complex, in particular the [Pd(η1-CH2–CH=CH2)(P–N–P’)]BF4 was used for the assembly of chemically modified Screen Printed Electrodes (SPEs) and their electrochemical reactivity was also investigated. For this purpose potassium ferricyanide, hexaammineruthenium(III) chloride, sodium hexachloroiridate-(III) hydrate, ascorbic acid (AA), uric acid (UA), acetaminophen (Ac), guanine (G) and adenine (A) were used to study the electron-transfer processes, which occurred at modified SPEs, fabricated by using the [Pd(η1-CH2–CH=CH2)(P–N–P’)]BF4, applying the drop casting procedure. Interesting results were obtained in the case of the guanine (G) quantitative detection,…

Detection limitElectrocatalysis towards guanine/GP-N-P complexesGuanineAnalytical chemistryPd center dot P-N-P complexesElectrochemistryAscorbic acidHeterogeneous electron-transfer kinetic constantsAnalytical Chemistry: Pdchemistry.chemical_compoundPotassium ferricyanidechemistrychemically modified SPEsElectrodeElectrochemistryReactivity (chemistry)Settore CHIM/01 - Chimica Analitica: Pd; P-N-P complexes; chemically modified SPEs; Electrochemistry; Heterogeneous electron-transfer kinetic constants electro-catalysis towards nucleic acidsHydrateNuclear chemistryelectro-catalysis towards nucleic acids
researchProduct

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct

Elliptic equations involving the $1$-Laplacian and a subcritical source term

2017

In this paper we deal with a Dirichlet problem for an elliptic equation involving the $1$-Laplacian operator and a source term. We prove that, when the growth of the source is subcritical, there exist two bounded nontrivial solutions to our problem. Moreover, a Pohozaev type identity is proved, which holds even when the growth is supercritical. We also show explicit examples of our results.

Dirichlet problemApplied Mathematics010102 general mathematicsMathematics::Analysis of PDEsType (model theory)01 natural sciencesTerm (time)010101 applied mathematicsElliptic curveIdentity (mathematics)Operator (computer programming)Mathematics - Analysis of PDEsBounded functionFOS: MathematicsApplied mathematics0101 mathematicsLaplace operator35J75 35J20 35J92AnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

A non-homogeneous elliptic problem dealing with the level set formulation of the inverse mean curvature flow

2015

Abstract In the present paper we study the Dirichlet problem for the equation − div ( D u | D u | ) + | D u | = f in an unbounded domain Ω ⊂ R N , where the datum f is bounded and nonnegative. We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz-continuous. This problem is the non-homogeneous extension of the level set formulation of the inverse mean curvature flow in a Euclidean space. We introduce a suitable concept of weak solution, for which we prove existence, uniqueness and a comparison principle.

Dirichlet problemMean curvature flowMean curvatureApplied MathematicsBounded functionWeak solutionMathematical analysisMathematics::Analysis of PDEsp-LaplacianInverse mean curvature flowUniquenessAnalysisMathematicsJournal of Differential Equations
researchProduct