Search results for " Pd"
showing 10 items of 651 documents
About Aczél Inequality and Some Bounds for Several Statistical Indicators
2020
In this paper, we will study a refinement of the Cauchy&ndash
Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen
2004
We answer a question of Jost on the validity of Poincare inequalities for metric space-valued functions in a Dirichlet domain. We also investigate the relationship between Dirichlet domains and the Sobolev-type spaces introduced by Korevaar and Schoen.
Perron's method for the porous medium equation
2016
O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0
Isotropic p-harmonic systems in 2D Jacobian estimates and univalent solutions
2016
The core result of this paper is an inequality (rather tricky) for the Jacobian determinant of solutions of nonlinear elliptic systems in the plane. The model case is the isotropic (rotationally invariant) p-harmonic system ...
Shock formation in the dispersionless Kadomtsev-Petviashvili equation
2016
The dispersionless Kadomtsev-Petviashvili (dKP) equation $(u_t+uu_x)_x=u_{yy}$ is one of the simplest nonlinear wave equations describing two-dimensional shocks. To solve the dKP equation we use a coordinate transformation inspired by the method of characteristics for the one-dimensional Hopf equation $u_t+uu_x=0$. We show numerically that the solutions to the transformed equation do not develop shocks. This permits us to extend the dKP solution as the graph of a multivalued function beyond the critical time when the gradients blow up. This overturned solution is multivalued in a lip shape region in the $(x,y)$ plane, where the solution of the dKP equation exists in a weak sense only, and a…
Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups
2020
We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.
Existence of a traveling wave solution in a free interface problem with fractional order kinetics
2021
Abstract In this paper we consider a system of two reaction-diffusion equations that models diffusional-thermal combustion with stepwise ignition-temperature kinetics and fractional reaction order 0 α 1 . We turn the free interface problem into a scalar free boundary problem coupled with an integral equation. The main intermediary step is to reduce the scalar problem to the study of a non-Lipschitz vector field in dimension 2. The latter is treated by qualitative topological methods based on the Poincare-Bendixson Theorem. The phase portrait is determined and the existence of a stable manifold at the origin is proved. A significant result is that the settling time to reach the origin is fin…
Nonlinear Liouville Problems in a Quarter Plane
2016
We answer affirmatively the open problem proposed by Cabr\'e and Tan in their paper "Positive solutions of nonlinear problems involving the square root of the Laplacian" (see Adv. Math. {\bf 224} (2010), no. 5, 2052-2093).
First measurement of the Sivers asymmetry for gluons using SIDIS data
2017
The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. It was extracted from measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it turned out to be non-zero for quarks. In this letter the evaluation of the Sivers asymmetry for gluons in the same process is presented. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering and leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simul…
Four solutions for fractional p-Laplacian equations with asymmetric reactions
2020
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.