Search results for " Pd"

showing 10 items of 651 documents

About Aczél Inequality and Some Bounds for Several Statistical Indicators

2020

In this paper, we will study a refinement of the Cauchy&ndash

Discrete mathematicsInequalityGeneral Mathematicsmedia_common.quotation_subjectlcsh:Mathematics010102 general mathematicsstatistical indicatorsMathematics::Analysis of PDEsVariation (game tree)lcsh:QA1-93901 natural sciences0103 physical sciencesComputer Science (miscellaneous)010307 mathematical physicsCauchy–Buniakowski–Schwarz inequality0101 mathematicsEngineering (miscellaneous)MathematicsSequence (medicine)media_commonMathematics
researchProduct

Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen

2004

We answer a question of Jost on the validity of Poincare inequalities for metric space-valued functions in a Dirichlet domain. We also investigate the relationship between Dirichlet domains and the Sobolev-type spaces introduced by Korevaar and Schoen.

Discrete mathematicsDirichlet formMathematics::Analysis of PDEsDirichlet L-functionDirichlet's energyMathematics::Spectral Theorysymbols.namesakeDirichlet kernelDirichlet's principlesymbolsGeneral Dirichlet seriesAnalysisDirichlet seriesMathematicsSobolev spaces for planar domainsPotential Analysis
researchProduct

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

Isotropic p-harmonic systems in 2D Jacobian estimates and univalent solutions

2016

The core result of this paper is an inequality (rather tricky) for the Jacobian determinant of solutions of nonlinear elliptic systems in the plane. The model case is the isotropic (rotationally invariant) p-harmonic system ...

Elliptic systemsGeneral MathematicsJacobian determinants010102 general mathematicsMathematical analysisIsotropyta111nonlinear systems of PDEsenergy-minimal deformationsDirichlet's energyp-harmonic mappingsInvariant (physics)01 natural sciencesvariational integrals010101 applied mathematicsNonlinear systemsymbols.namesakeJacobian matrix and determinantsymbolsUniqueness0101 mathematicsNonlinear elasticityMathematicsRevista Matemática Iberoamericana
researchProduct

Shock formation in the dispersionless Kadomtsev-Petviashvili equation

2016

The dispersionless Kadomtsev-Petviashvili (dKP) equation $(u_t+uu_x)_x=u_{yy}$ is one of the simplest nonlinear wave equations describing two-dimensional shocks. To solve the dKP equation we use a coordinate transformation inspired by the method of characteristics for the one-dimensional Hopf equation $u_t+uu_x=0$. We show numerically that the solutions to the transformed equation do not develop shocks. This permits us to extend the dKP solution as the graph of a multivalued function beyond the critical time when the gradients blow up. This overturned solution is multivalued in a lip shape region in the $(x,y)$ plane, where the solution of the dKP equation exists in a weak sense only, and a…

Shock formationFOS: Physical sciencesGeneral Physics and AstronomyKadomtsev–Petviashvili equation01 natural sciencesCritical point (mathematics)010305 fluids & plasmasDissipative dKP equation[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Analysis of PDEsMethod of characteristicsPosition (vector)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematical physicsMathematicsCusp (singularity)Multiscales analysisdispersionless Kadomtsev-Petviashvili equation; dissipative dKP equation; multiscales analysis; shock formationPlane (geometry)Multivalued functionApplied Mathematics010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Nonlinear Sciences::Exactly Solvable and Integrable SystemsDispersionless Kadomtsev-Petviashvili equationDissipative systemAnalysis of PDEs (math.AP)
researchProduct

Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups

2020

We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.

Class (set theory)Pure mathematicsControl and OptimizationCarnot groups calibrations nonlocal perimeters/ Γ-convergence sets of finite perimeter rectifiabilityMathematics::Analysis of PDEssets of finite perimetervariaatiolaskentaComputer Science::Computational Geometry01 natural sciencesUpper and lower boundsdifferentiaaligeometriasymbols.namesakeMathematics - Analysis of PDEs510 MathematicsMathematics - Metric GeometryComputer Science::Logic in Computer ScienceConvergence (routing)FOS: MathematicsMathematics::Metric Geometry0101 mathematicscalibrationsMathematicsnonlocal perimeters010102 general mathematicsrectifiabilityryhmäteoriaMetric Geometry (math.MG)matemaattinen optimointi010101 applied mathematicsComputational MathematicsΓ-convergenceΓ-convergenceCarnot groupsControl and Systems EngineeringsymbolsCarnot cycleAnalysis of PDEs (math.AP)ESAIM: Control, Optimisation and Calculus of Variations
researchProduct

Existence of a traveling wave solution in a free interface problem with fractional order kinetics

2021

Abstract In this paper we consider a system of two reaction-diffusion equations that models diffusional-thermal combustion with stepwise ignition-temperature kinetics and fractional reaction order 0 α 1 . We turn the free interface problem into a scalar free boundary problem coupled with an integral equation. The main intermediary step is to reduce the scalar problem to the study of a non-Lipschitz vector field in dimension 2. The latter is treated by qualitative topological methods based on the Poincare-Bendixson Theorem. The phase portrait is determined and the existence of a stable manifold at the origin is proved. A significant result is that the settling time to reach the origin is fin…

Settling timeScalar (mathematics)01 natural sciencesPoincare-Bendixson TheoremTraveling wave solutionsMathematics - Analysis of PDEsDimension (vector space)Free boundary problemFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Trapping triangles0101 mathematicsMathematicsPhase portraitApplied Mathematics010102 general mathematicsMathematical analysisIntegral equationStable manifoldDiffusional-thermal combustionFree interface problems010101 applied mathematicsVector fieldFractional order kineticsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Nonlinear Liouville Problems in a Quarter Plane

2016

We answer affirmatively the open problem proposed by Cabr\'e and Tan in their paper "Positive solutions of nonlinear problems involving the square root of the Laplacian" (see Adv. Math. {\bf 224} (2010), no. 5, 2052-2093).

osittaisdifferentiaaliyhtälötPlane (geometry)General MathematicsOpen problemta111010102 general mathematicsMathematical analysis35B09 35B53 35J60Quarter (United States coin)01 natural sciencesNonlinear systemMathematics - Analysis of PDEsSquare root0103 physical sciencesFOS: Mathematicspartial differential equations010307 mathematical physics0101 mathematicsLaplace operatorAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

First measurement of the Sivers asymmetry for gluons using SIDIS data

2017

The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. It was extracted from measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it turned out to be non-zero for quarks. In this letter the evaluation of the Sivers asymmetry for gluons in the same process is presented. The analysis method is based on a Monte Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering and leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes are simul…

hadron: angular distributionmuon+: polarized beamNuclear TheoryPartonmuon+ deuteron: deep inelastic scatteringhadron: transverse momentumtransverse momentum dependence01 natural sciencesCOMPASSHigh Energy Physics - ExperimentSubatomär fysikSivers functionHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)photon gluon: fusionSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]partonNuclear Experimentmedia_commonQuantum chromodynamicsPhysicsgluon: distribution functiondeep inelastic scattering: semi-inclusive reactionhigher-order: 0polarized target: transversehep-phDeep inelastic scattering; Gluon; PDF; Sivers; TMD; Nuclear and High Energy Physicslcsh:QC1-999High Energy Physics - PhenomenologySivereffect: CollinsNucleonCompton scatteringnumerical calculations: Monte Carlospin: asymmetryParticle Physics - ExperimentDeep inelastic scatteringQuarkParticle physicsNuclear and High Energy Physicsdata analysis methoddeuteron: polarized targethadron: asymmetryangular distribution: asymmetryneural networkmedia_common.quotation_subjectpolarization: longitudinalFOS: Physical sciencesAsymmetryPDFGluonNuclear physics[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesquantum chromodynamicsSivers010306 general physicsParticle Physics - Phenomenology010308 nuclear & particles physicshep-ex160 GeV/cHigh Energy Physics::PhenomenologyTMDnucleon: spin: transverseCERN SPSDeep inelastic scatteringGluonmuon+ p: deep inelastic scatteringcorrelation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentabsorptionlcsh:PhysicsLeptonexperimental results
researchProduct

Four solutions for fractional p-Laplacian equations with asymmetric reactions

2020

We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.

Sublinear functionGeneral MathematicsMathematical analysisDegenerate energy levelsType (model theory)Fractional p-LaplacianCritical point (mathematics)Dirichlet distributionNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicacritical point theory35A15 35R11 58E05p-LaplaciansymbolsFOS: Mathematicsasymmetric reactionsMathematicsMorse theoryAnalysis of PDEs (math.AP)
researchProduct