Search results for " Pd"

showing 10 items of 651 documents

On a new proof of Moser's twist mapping theorem

1976

Based on a new idea of the author, a new proof of J. Moser's twist mapping theorem is presented.

Applied MathematicsMathematical analysisMathematics::Analysis of PDEsAstronomy and AstrophysicsAlgebraComputational MathematicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESNonlinear Sciences::Exactly Solvable and Integrable SystemsSpace and Planetary ScienceModeling and SimulationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONAutomotive EngineeringTwistMathematical PhysicsComputingMethodologies_COMPUTERGRAPHICSMathematicsCelestial Mechanics
researchProduct

Monotonicity-based inversion of the fractional Schr\"odinger equation II. General potentials and stability

2019

In this work, we use monotonicity-based methods for the fractional Schr\"odinger equation with general potentials $q\in L^\infty(\Omega)$ in a Lipschitz bounded open set $\Omega\subset \mathbb R^n$ in any dimension $n\in \mathbb N$. We demonstrate that if-and-only-if monotonicity relations between potentials and the Dirichlet-to-Neumann map hold up to a finite dimensional subspace. Based on these if-and-only-if monotonicity relations, we derive a constructive global uniqueness results for the fractional Calder\'on problem and its linearized version. We also derive a reconstruction method for unknown obstacles in a given domain that only requires the background solution of the fractional Sch…

Applied MathematicsMathematical analysisOpen setMonotonic functionLipschitz continuity01 natural sciencesInversion (discrete mathematics)Stability (probability)OmegaSchrödinger equation010101 applied mathematicsComputational Mathematicssymbols.namesakeMathematics - Analysis of PDEs35R30Bounded functionsymbols0101 mathematicsAnalysisMathematics
researchProduct

The Calderón Problem for a Space-Time Fractional Parabolic Equation

2020

In this article we study an inverse problem for the space-time fractional parabolic operator $(\partial_t-\Delta)^s+Q$ with $0<s<1$ in any space dimension. We uniquely determine the unknown bounded...

Applied MathematicsSpace timeOperator (physics)Space dimensionMathematical analysisMathematics::Analysis of PDEsInverse problem01 natural sciences010101 applied mathematicsComputational MathematicsBounded function0101 mathematicsAnalysisMathematicsSIAM Journal on Mathematical Analysis
researchProduct

The Calderón problem for the fractional Schrödinger equation

2020

We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.

Approximation propertyDimension (graph theory)35J10Disjoint sets01 natural sciences35J70Domain (mathematical analysis)inversio-ongelmatSchrödinger equationsymbols.namesakeMathematics - Analysis of PDEs0103 physical sciencesApplied mathematicsUniqueness0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötNumerical AnalysisCalderón problemApplied Mathematics010102 general mathematicsInverse problem35R30approximation propertyBounded functionsymbolsinverse problem010307 mathematical physicsfractional Laplacianapproksimointi26A33Analysis
researchProduct

[2]Catenanes and inclusion complexes derived from self-assembled rectangular PdII and PtII metallocycles

2012

New inclusion complexes and [2]catenanes were self-assembled from a fluorescent diazapyrenium based ligand, a PdII or PtII complex, and cyclic or acyclic electron rich aromatic guests in aqueous and organic media. The molecular rectangles display a π-deficient cavity suitable to incorporate π-donor aromatic systems. The inclusion complexes between the metallocycles and phenylenic (2a,b) and naphthalenic (3a,b–5a,b) derivatives were studied by NMR, UV-vis and fluorescence spectroscopy. The crystal structure of (3b) ⊂ 1a·6PF(6) confirmed the insertion of the guest into the cavity of the metallocycle. Following the same self-assembly strategy, the use of polyethers 6,7 as π-donors resulted in …

Aqueous solutionLigandChemistryStereochemistryCatenaneCrystal structureSettore CHIM/06 - Chimica OrganicaMetallacycleFluorescenceFluorescence spectroscopySelf assembledCatenanes inclusion complexes PdII PtII metallocyclesInorganic ChemistryCrystallographySettore CHIM/03 - Chimica Generale E Inorganica
researchProduct

ASYMPTOTIC ANALYSIS OF THE LINEARIZED NAVIER–STOKES EQUATION ON AN EXTERIOR CIRCULAR DOMAIN: EXPLICIT SOLUTION AND THE ZERO VISCOSITY LIMIT

2001

In this paper we study and derive explicit formulas for the linearized Navier-Stokes equations on an exterior circular domain in space dimension two. Through an explicit construction, the solution is decomposed into an inviscid solution, a boundary layer solution and a corrector. Bounds on these solutions are given, in the appropriate Sobolev spaces, in terms of the norms of the initial and boundary data. The correction term is shown to be of the same order of magnitude as the square root of the viscosity. Copyright © 2001 by Marcel Dekker, Inc.

Asymptotic analysisApplied MathematicsMathematical analysisAsymptotic analysis; Boundary layer; Explicit solutions; Navier-Stokes equations; Stokes equations; Zero viscosity; Mathematics (all); Analysis; Applied MathematicsMathematics::Analysis of PDEsAnalysiStokes equationDomain (mathematical analysis)Navier-Stokes equationPhysics::Fluid DynamicsSobolev spaceAsymptotic analysiBoundary layersymbols.namesakeBoundary layerSquare rootExplicit solutionInviscid flowStokes' lawsymbolsMathematics (all)Zero viscosityNavier–Stokes equationsAnalysisMathematicsCommunications in Partial Differential Equations
researchProduct

On vibrating thin membranes with mass concentrated near the boundary: an asymptotic analysis

2018

We consider the spectral problem \begin{equation*} \left\{\begin{array}{ll} -\Delta u_{\varepsilon}=\lambda(\varepsilon)\rho_{\varepsilon}u_{\varepsilon} & {\rm in}\ \Omega\\ \frac{\partial u_{\varepsilon}}{\partial\nu}=0 & {\rm on}\ \partial\Omega \end{array}\right. \end{equation*} in a smooth bounded domain $\Omega$ of $\mathbb R^2$. The factor $\rho_{\varepsilon}$ which appears in the first equation plays the role of a mass density and it is equal to a constant of order $\varepsilon^{-1}$ in an $\varepsilon$-neighborhood of the boundary and to a constant of order $\varepsilon$ in the rest of $\Omega$. We study the asymptotic behavior of the eigenvalues $\lambda(\varepsilon)$ and the eige…

Asymptotic analysisAsymptotic analysisBoundary (topology)Spectral analysis01 natural sciencesMathematics - Analysis of PDEsFOS: MathematicsBoundary value problem0101 mathematicsSteklov boundary conditionsMathematical physicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)Order (ring theory)Asymptotic analysis; Eigenvalues; Mass concentration; Spectral analysis; Steklov boundary conditions; Analysis; Computational Mathematics; Applied MathematicsEigenvaluesEigenfunction010101 applied mathematicsComputational MathematicsBounded functionDomain (ring theory)Mass concentrationAnalysisAnalysis of PDEs (math.AP)
researchProduct

A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary

2016

We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…

Asymptotic analysisGeneral MathematicsBoundary (topology)Asymptotic expansion01 natural sciences35J25; 31B10; 45A05; 35B25; 35C20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (all)Mathematics - Numerical Analysis0101 mathematicsMathematicsDirichlet problemLaplace's equationDirichlet problemAnalytic continuationApplied Mathematics010102 general mathematicsMathematical analysisHigh Energy Physics::PhenomenologyReal analytic continuation in Banach spaceNumerical Analysis (math.NA)Physics::Classical Physics010101 applied mathematicsasymptotic analysisLaplace operatorPhysics::Space PhysicsAsymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain; Mathematics (all); Applied MathematicsAsymptotic expansionLaplace operator[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Singularly perturbed perforated domainAnalytic functionAnalysis of PDEs (math.AP)Asymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain;
researchProduct

Discontinuous Gradient Constraints and the Infinity Laplacian

2012

Motivated by tug-of-war games and asymptotic analysis of certain variational problems, we consider a gradient constraint problem involving the infinity Laplace operator. We prove that this problem always has a solution that is unique if a certain regularity condition on the constraint is satisfied. If this regularity condition fails, then solutions obtained from game theory and $L^p$-approximation need not coincide.

Asymptotic analysisGeneral Mathematicsta111010102 general mathematicsMathematical analysisinfinity Laplace operator01 natural sciences010101 applied mathematicsConstraint (information theory)Mathematics - Analysis of PDEsOperator (computer programming)Infinity LaplacianFOS: Mathematics0101 mathematicsGame theorygradient constraint problemsAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

Angular analysis of charged and neutral B → Kμ + μ − decays

2014

The angular distributions of the rare decays B → K+µ+µ- and B0 → K0 &lt;inf&gt;a&lt;/inf&gt;Sμ+μ- are studied with data corresponding to 3 fb-1 of integrated luminosity, collected in proton-proton collisions at 7 and 8TeV centre-of-mass energies with the LHCb detector. The angular distribution is described by two parameters, FH and the forward-backward asymmetry of the dimuon system AFB, which are determined in bins of the dimuon mass squared. The parameter F&lt;inf&gt;H&lt;/inf&gt; is a measure of the contribution from (pseudo)scalar and tensor amplitudes to the decay width. The measurements of A&lt;inf&gt;FB&lt;/inf&gt; and F&lt;inf&gt;H&lt;/inf&gt; reported here are the most precise to d…

B physic12.15.MmB physicsSettore FIS/04 - Fisica Nucleare e SubnucleareLuminosityNeutral currentFlavor physicsMathematics::ProbabilityNuclear Experimentmedia_commonPhysicsB physics; Flavor physics; Flavour changing neutral currents; Hadron-hadron scattering; Rare decayPhysicsPHYSICS PARTICLES & FIELDSParticle physicsAmplitudePhysical SciencesFísica nuclearLHCNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subject14.40.NdScalar (mathematics)Flavour Changing Neutral CurrentsMathematics::Analysis of PDEsLHCb - Abteilung HofmannHadronsMeasure (mathematics)AsymmetryMathematics::Numerical AnalysisStandard ModelAngular distributionTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYLeptonic semileptonic and radiative decays of bottom mesonSDG 7 - Affordable and Clean EnergyTensorLarge Hadron Collider (France and Switzerland)Science & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyHadron-Hadron ScatteringGran Col·lisionador d'HadronsFlavour changing neutral currentLHCbRare decay13.20.HeFlavor physicBottom mesons (|B|>0)High Energy Physics::ExperimentFísica de partículesExperiments
researchProduct