Search results for " Photodiode"
showing 10 items of 21 documents
Calibration of the photon spectrometer PHOS of the ALICE experiment
2019
Journal of Instrumentation 14(05), P05025 - P05025 (2019). doi:10.1088/1748-0221/14/05/P05025
AX-PET: Concept, proof of principle and first results with phantoms
2010
AX-PET is a novel PET concept based on long crystals axially arranged and orthogonal Wavelength shifter (WLS) strips, both individually readout by Geiger-mode Avalanche Photo Diodes (G-APD). Its design was conceived in order to reduce the parallax error and simultaneously improve spatial resolution and sensitivity. The assessment of the AX-PET concept and potential was carried out through a set of measurements comprising individual module characterizations and scans in coincidence mode of point-like and extended sources. The estimated energy and spatial resolutions from point-like measurements are R FWHM =11.6% (at 511 keV) and 1.7–1.9 mm (FWHM) respectively as measured with point-like sour…
Responsivity measurements of 4H-SiC Schottky photodiodes for UV light monitoring
2014
We report on the design and the electro-optical characterization of a novel class of 4H-SiC vertical Schottky UV detectors, based on the pinch-off surface effect and obtained employing Ni2Si interdigitated strips. We have measured, in dark conditions, the forward and reverse I–V characteristics as a function of the temperature and the C–V characteristics. Responsivity measurements of the devices, as a function of the wavelength (in the 200 – 400 nm range), of the package temperature and of the applied reverse bias are reported. We compared devices featured by different strip pitch size, and found that the 10 μm device pitch exhibits the best results, being the best compromise in terms of fu…
Responsivity measurements of N-on-P and P-on-N silicon photomultipliers in the continuous wave regime
2013
We report the electrical and optical comparison, in continuous wave regime, of two novel classes of silicon photomultipliers (SiPMs) fabricated in planar technology on silicon P-type and N-type substrate respectively. Responsivity measurements have been performed with an incident optical power from tenths of picowatts to hundreds of nanowatts and on a broad spectrum, ranging from ultraviolet to near infrared (340-820 nm). For both classes of investigated SiPMs, responsivity shows flat response versus the optical incident power, when a preset overvoltage and wavelength is applied . More in detail, this linear behavior extends up to about 10 nW for lower overvoltages, while a shrink is observ…
Evaluation of a commercial APD array (Avalanche PhotoDiode) for a readout detector in a hadrontherapy beam characterization application
2010
The aim of the present work is the characterization of the S8898–128–02 Avalanche PhotoDiode array (APDs) from Hamamatsu Photonics. This work includes the implementation of a readout system as well as electronic noise estimation in APDs under several conditions varying integration times and clock frequencies.
Test and Simulation of a LYSO+APD matrix with a tagged Photon Beam from 40 to 300 MeV
2012
Understanding the energy resolution terms for LYSO based calorimeters with APD readout at low energy (< 500 MeV) is relevant both for the completion of the KLOE-2 experiment, at DAΦNE, and for the design of the Mu2e calorimeter. In this work, we present a dedicated comparison between experimental data, taken in 2011 at the MAMI tagged photon beam facility with a crystal matrix prototype, and a full Geant-4 simulation of this detector. The crystal prototype matrix consisted of 9 2×2 × 15 cm3 LYSO crystals read-out by 10×10 mm2 Hamamatsu avalanche photodiodes (APD) surrounded by 8 PbWO4 crystals read-out by Bialkali photomultipliers for outer leakage recovery granting a total transverse cover…
The backward end-cap for the PANDA electromagnetic calorimeter
2015
The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yiel…
Background and muon counting rates in underground muon measurements with a plastic scintillator counter based on a wavelength shifting fibre and a mu…
2010
AbstractIn this short note we present results of background measurements carried out with polystyrene based cast plastic 12.0×12.0×3.0 cm3 size scintillator counter with a wavelength shifting fibre and a multi-pixel Geiger mode avalanche photodiode readout in the Baksan underground laboratory at a depth of 200 metres of water equivalent. The total counting rate of the scintillator counter measured at this depth and at a threshold corresponding to ∼0.37 of a minimum ionizing particle is approximately 1.3 Hz.
Time response of avalanche photodiodes as a function of the internal gain
1998
Abstract Using a red LED and a blue laser as a light source, time response of avalanche photodiodes and Metal-Resistive Silicon (MRS) layer avalanche photodiodes [1] has been measured. A strong dependence of the time resolution on the internal gain has been observed. The obtained results show that the increase of the internal gain improves the time resolution. However, there exists a critical value for the internal gain. Beyond this value a deterioration of the time resolution is observed.
Multi-pixel Geiger-mode avalanche photodiode and wavelength shifting fibre readout of plastic scintillator counters of the EMMA underground experiment
2009
The results of a development of a scintillator counter with wavelength shifting (WLS) fibre and a multi-pixel Geiger-mode avalanche photodiode readout are presented. The photodiode has a metal-resistor-semiconductor layered structure and operates in the limited Geiger mode. The scintillator counter has been developed for the EMMA underground cosmic ray experiment.