Search results for " Programming"
showing 10 items of 1616 documents
The Steiner Traveling Salesman Problem and its extensions
2019
Abstract This paper considers the Steiner Traveling Salesman Problem, an extension of the classical Traveling Salesman Problem on an incomplete graph where not all vertices have demand. Some extensions including several depots or location decisions are introduced, modeled and solved. A compact integer linear programming formulation is proposed for each problem, where the routes are represented with two-index decision variables, and parity conditions are modeled using cocircuit inequalities. Exact branch-and-cut algorithms are developed for all formulations. Computational results obtained confirm the good performance of the algorithms. Instances with up to 500 vertices are solved optimally.
On ergodic operator means in Banach spaces
2016
We consider a large class of operator means and prove that a number of ergodic theorems, as well as growth estimates known for particular cases, continue to hold in the general context under fairly mild regularity conditions. The methods developed in the paper not only yield a new approach based on a general point of view, but also lead to results that are new, even in the context of the classical Cesaro means.
Some integral type fixed point theorems in Non-Archimedean Menger PM-Spaces with common property (E.A) and application of functional equations in dyn…
2013
In this paper, we prove some integral type common fixed point theorems for weakly compatible mappings in Non-Archimedean Menger PM-spaces employing common property (E.A). Some examples are furnished which demonstrate the validity of our results. We extend our main result to four finite families of self-mappings employing the notion of pairwise commuting. Moreover, we give an application which supports the usability of our main theorem.
Fixed Point Theorems with Applications to the Solvability of Operator Equations and Inclusions on Function Spaces
2015
1Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 2Department of Mathematical Analysis, University of Valencia, Spain 3Centre Universitaire Polydisciplinaire, Kelaa des Sraghna, Morocco 4Universite Cadi Ayyad, Laboratoire de Mathematiques et de Dynamique de Populations, Marrakech, Morocco 5Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123 Palermo, Italy
Domains of accretive operators in Banach spaces
2016
LetD(A)be the domain of anm-accretive operatorAon a Banach spaceE. We provide sufficient conditions for the closure ofD(A)to be convex and forD(A)to coincide withEitself. Several related results and pertinent examples are also included.
Semigroups of composition operators and integral operators in spaces of analytic functions
2013
We study the maximal spaces of strong continuity on BMOA and the Bloch space B for semigroups of composition operators. Characterizations are given for the cases when these maximal spaces are V MOA or the little Bloch B0. These characterizations are in terms of the weak compactness of the resolvent function or in terms of a specially chosen symbol g of an integral operator Tg. For the second characterization we prove and use an independent result, namely that the operators Tg are weakly compact on the above mentioned spaces if and only if they are compact.
New spaces of matrices with operator entries
2019
In this paper, we will consider matrices with entries in the space of operators $\mathcal{B}(H)$, where $H$ is a separable Hilbert space and consider the class of matrices that can be approached in the operator norm by matrices with a finite number of diagonals. We will use the Schur product with Toeplitz matrices generated by summability kernels to describe such a class and show that in the case of Toeplitz matrices it can be identified with the space of continuous functions with values in $\mathcal B(H)$. We shall also introduce matriceal versions with operator entries of classical spaces of holomorphic functions such as $H^\infty(\mathbb{D})$ and $A(\mathbb{D})$ when dealing with upper t…
Padding and the expressive power of existential second-order logics
1998
Padding techniques are well-known from Computational Complexity Theory. Here, an analogous concept is considered in the context of existential second-order logics. Informally, a graph H is a padded version of a graph G, if H consists of an isomorphic copy of G and some isolated vertices. A set A of graphs is called weakly expressible by a formula ϕ in the presence of padding, if ϕ is able to distinguish between (sufficiently) padded versions of graphs from A and padded versions of graphs that are not in A.
On the Power of Tree-Walking Automata
2000
Tree-walking automata (TWAs) recently received new attention in the fields of formal languages and databases. Towards a better understanding of their expressiveness, we characterize them in terms of transitive closure logic formulas in normal form. It is conjectured by Engelfriet and Hoogeboom that TWAs cannot define all regular tree languages, or equivalently, all of monadic second-order logic. We prove this conjecture for a restricted, but powerful, class of TWAs. In particular, we show that 1-bounded TWAs, that is TWAs that are only allowed to traverse every edge of the input tree at most once in every direction, cannot define all regular languages. We then extend this result to a class …
Polyhedral results for a vehicle routing problem
1991
Abstract The Vehicle Routing Problem is a well known, and hard, combinatorial problem, whose polyhedral structure has deserved little attention. In this paper we consider the particular case in which all the demands are equal (since in the general case the associated polytope may be empty). From a known formulation of the problem we obtain the dimension of the corresponding polytope and we study the facetial properties of every inequality in it.