Search results for " Quantization"
showing 10 items of 111 documents
Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals via a quasinormal-modes approach
2004
An extension of the second quantization scheme based on the quasinormal-modes theory to one-dimensional photonic band gap (PBG) structures is discussed. Such structures, treated as double open optical cavities, are studied as part of a compound closed system including the electromagnetic radiative external bath. The electromagnetic field inside the photonic crystal is successfully represented by a new class of modes called quasinormal modes. Starting from this representation we introduce the Feynman's propagator to calculate the decay rate of a dipole inside a PBG structure, related to the density of modes, in the presence of the vacuum fluctuations outside the one-dimensional cavity.
Berry's phase in Cavity QED: proposal for observing an effect of field quantization
2002
Geometric phases are well known in classical electromagnetism and quantum mechanics since the early works of Pantcharatnam and Berry. Their origin relies on the geometric nature of state spaces and has been studied in many different systems such as spins, polarized light and atomic physics. Recent works have explored their application in interferometry and quantum computation. Earlier works suggest how to observe these phases in single quantum systems adiabatically driven by external classical devices or sources, where, by classical, we mean any system whose state does not change considerably during the interaction time: an intense magnetic field interacting with a spin 1/2, or a birefringe…
Numerical stochastic perturbation theory in the Schrödinger functional
2013
The Schr\"odinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.
Robustness Analysis of DCE-MRI-Derived Radiomic Features in Breast Masses: Assessing Quantization Levels and Segmentation Agreement
2022
Featured Application The use of highly robust radiomic features is fundamental to reduce intrinsic dependencies and to provide reliable predictive models. This work presents a study on breast tumor DCE-MRI considering the radiomic feature robustness against the quantization settings and segmentation methods. Machine learning models based on radiomic features allow us to obtain biomarkers that are capable of modeling the disease and that are able to support the clinical routine. Recent studies have shown that it is fundamental that the computed features are robust and reproducible. Although several initiatives to standardize the definition and extraction process of biomarkers are ongoing, th…
Interaction-induced spin polarization in quantum dots.
2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
Geometric quantization in the presence of an electromagnetic field
1983
Some aspects of the formalism of geometric quantization are described emphasizing the role played by the symmetry group of the quantum system which, for the free particle, turns out to be a central extensionG(m) of the Galilei groupG. The resulting formalism is then applied to the case of a particle interacting with the electromagnetic field, which appears as a necessary modification of the connection 1-form of the quantum bundle when its invariance group is generalized to alocal extension ofG. Finally, the quantization of the electric charge in the presence of a Dirac monopole is also briefly considered.
Topological Hopf Algebras, Quantum Groups and Deformation Quantization
2019
After a presentation of the context and a brief reminder of deformation quantization, we indicate how the introduction of natural topological vector space topologi es on Hopf algebras associated with Poisson Lie groups, Lie bialgebras and their doubles explains their dualities a nd provides a comprehensive framework. Relations with deformation quantization and applications to the deformation quantization of symmetric spaces are described.
Relativistic wave equations from supergroup quantization
1983
A formalism of geometric quantization recently introduced which is based on the consideration of Lie groups which are central extensions by U(1) is applied to the relativistic case by using the N-2 super Poincare group with a central charge.
A Specialized Architecture for Color Image Edge Detection Based on Clifford Algebra
2013
Edge detection of color images is usually performed by applying the traditional techniques for gray-scale images to the three color channels separately. However, human visual perception does not differentiate colors and processes the image as a whole. Recently, new methods have been proposed that treat RGB color triples as vectors and color images as vector fields. In these approaches, edge detection is obtained extending the classical pattern matching and convolution techniques to vector fields. This paper proposes a hardware implementation of an edge detection method for color images that exploits the definition of geometric product of vectors given in the Clifford algebra framework to ex…
Two-twistor particle models and free massive higher spin fields
2015
We present D=3 and D=4 models for massive particles moving in a new type of enlarged spacetime, with D-1 additional vector coordinates, which after quantization lead to the towers of massive higher spin (HS) free fields. Two classically equivalent formulations are presented: one with a hybrid spacetime/bispinor geometry and a second described by a free two-twistor dynamics with constraints. After quantization in the D=3 and D=4 cases, the wave functions are given as functions on the SL(2,R) and SL(2,C) group manifolds respectively, and describe arbitrary on-shell momenta and spin degrees of freedom. Finally, the D=6 case and possible supersymmetric extensions are mentioned.