Search results for " Quantization"
showing 10 items of 111 documents
The damped harmonic oscillator in deformation quantization
2005
We propose a new approach to the quantization of the damped harmonic oscillator in the framework of deformation quantization. The quantization is performed in the Schr\"{o}dinger picture by a star-product induced by a modified "Poisson bracket". We determine the eigenstates in the damped regime and compute the transition probability between states of the undamped harmonic oscillator after the system was submitted to dissipation.
The Complete Solution of the Classical SL(2,ℝ/U(1) Gauged WZNW Field Theory
1998
We prove that any gauged WZNW model has a Lax pair representation, and give explicitly the general solution of the classical equations of motion of the SL(2,R)/U(1) theory. We calculate the symplectic structure of this solution by solving a differential equation of the Gelfand-Dikii type with initial state conditions at infinity, and transform the canonical physical fields non-locally onto canonical free fields. The results will, finally, be collected in a local B\"acklund transformation. These calculations prepare the theory for an exact canonical quantization.
ON THE DEFORMATION QUANTIZATION OF AFFINE ALGEBRAIC VARIETIES
2004
We compute an explicit algebraic deformation quantization for an affine Poisson variety described by an ideal in a polynomial ring, and inheriting its Poisson structure from the ambient space.
DEFORMATION QUANTIZATION OF COADJOINT ORBITS
2000
A method for the deformation quantization of coadjoint orbits of semisimple Lie groups is proposed. It is based on the algebraic structure of the orbit. Its relation to geometric quantization and differentiable deformations is explored.
Cohomological analysis of gauged-fixed gauge theories
1999
The relation between the gauge-invariant local BRST cohomology involving the antifields and the gauge-fixed BRST cohomology is clarified. It is shown in particular that the cocycle conditions become equivalent once it is imposed, on the gauge-fixed side, that the BRST cocycles should yield deformations that preserve the nilpotency of the (gauge-fixed) BRST differential. This shows that the restrictions imposed on local counterterms by the Quantum Noether condition in the Epstein--Glaser construction of gauge theories are equivalent to the restrictions imposed by BRST invariance on local counterterms in the standard Lagrangian approach.
PRIME NUMBERS, QUANTUM FIELD THEORY AND THE GOLDBACH CONJECTURE
2012
Motivated by the Goldbach conjecture in Number Theory and the abelian bosonization mechanism on a cylindrical two-dimensional spacetime we study the reconstruction of a real scalar field as a product of two real fermion (so-called \textit{prime}) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators $b_{p}^{\dag}$ --labeled by prime numbers $p$-- acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allow us to prove that the theory is not renormalizabl…
Spinor moving frame, M0-brane covariant BRST quantization and intrinsic complexity of the pure spinor approach
2007
To exhibit the possible origin of the inner complexity of the Berkovits's pure spinor approach, we consider the covariant BRST quantization of the D=11 massless superparticle (M0-brane) in its spinor moving frame or twistor-like Lorentz harmonics formulation. The presence of additional twistor-like variables (spinor harmonics) allows us to separate covariantly the first and the second class constraints. After taking into account the second class constraints by means of Dirac brackets and after further reducing the first class constraints algebra, the dynamical system is described by the cohomology of a simple BRST charge associated to the d=1, n=16 supersymmetry algebra. The calculation of …
D=11massless superparticle covariant quantization, pure spinor BRST charge and hidden symmetries
2007
We consider the covariant quantization of the D=11 massless superparticle (M0-brane) in the spinor moving frame or twistor-like Lorentz harmonics formulation. The action involves the set of 16 constrained 32 component Majorana spinors, the spinor Lorentz harmonics parametrizing (as homogeneous coordinates, modulo gauge symmetries) the celestial sphere S9. There presence allows us to separate covariantly the first and the second class constraints of the model. After taking into account the second class constraints by means of Dirac brackets and after further reducing the first class constraints algebra, the system is described in terms of a simple BRST charge associated to the d=1, n=16 supe…
Bicoherent-State Path Integral Quantization of a non-Hermitian Hamiltonian
2020
We introduce, for the first time, bicoherent-state path integration as a method for quantizing non-hermitian systems. Bicoherent-state path integrals arise as a natural generalization of ordinary coherent-state path integrals, familiar from hermitian quantum physics. We do all this by working out a concrete example, namely, computation of the propagator of a certain quasi-hermitian variant of Swanson's model, which is not invariant under conventional $PT$-transformation. The resulting propagator coincides with that of the propagator of the standard harmonic oscillator, which is isospectral with the model under consideration by virtue of a similarity transformation relating the corresponding…
Deformation quantization of covariant fields
2002
After sketching recent advances and subtleties in classical relativistically covariant field theories, we give in this short Note some indications as to how the deformation quantization approach can be used to solve or at least give a better understanding of their quantization.