Search results for " Quantum"
showing 10 items of 3215 documents
Relativistic positioning systems: Perspectives and prospects
2013
Relativistic positioning systems are interesting {\em technical objects} for applications around the Earth and in the Solar system. But above all else, they are basic {\em scientific objects} allowing developing relativity from its own concepts. Some past and future features of relativistic positioning systems, with special attention to the developments that they suggest for an {\em epistemic relativity} (relativistic experimental approach to physics), are analyzed. This includes {\em relativistic stereometry}, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) {\em laboratory} (space-time region able to perform experiments…
Are pulsars born with a hidden magnetic field?
2015
The observation of several neutron stars in the center of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the proto-neutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris onto the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper …
Towards asteroseismology of core-collapse supernovae with gravitational-wave observations – I. Cowling approximation
2017
Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS–shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a backgr…
Design, construction and commissioning of the Braunschweig Icing Wind Tunnel
2018
Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m × 0.5 m with peak velocities of up to 40 m s−1. The static air temperature ranges from −25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m−3 c…
Approaches to relativistic positioning around Earth and error estimations
2016
In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possib…
Dressed emitters as impurities
2021
Dressed states forming when quantum emitters or atoms couple to a photonic bath underpin a number of phenomena and applications, in particular dispersive effective interactions occurring within photonic bandgaps. Here, we present a compact formulation of the resolvent-based theory for calculating atom-photon dressed states built on the idea that the atom behaves as an effective impurity. This establishes an explicit connection with the standard impurity problem in condensed matter. Moreover, it allows us to formulate and settle in a model-independent context a number of properties previously known only for specific models or not entirely formalized. The framework is next extended to the cas…
Quantum localization and bound state formation in Bose-Einstein condensates
2010
We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bou…
First-principles nonequilibrium Green's-function approach to transient photoabsorption: Application to atoms
2015
We put forward a first-principle NonEquilibrium Green's Function (NEGF) approach to calculate the transient photoabsorption spectrum of optically thin samples. The method can deal with pump fields of arbitrary strength, frequency and duration as well as for overlapping and nonoverlapping pump and probe pulses. The electron-electron repulsion is accounted for by the correlation self-energy, and the resulting numerical scheme deals with matrices that scale quadratically with the system size. Two recent experiments, the first on helium and the second on krypton, are addressed. For the first experiment we explain the bending of the Autler-Townes absorption peaks with increasing the pump-probe d…
Space-borne Bose–Einstein condensation for precision interferometry
2018
Space offers virtually unlimited free-fall in gravity. Bose-Einstein condensation (BEC) enables ineffable low kinetic energies corresponding to pico- or even femtokelvins. The combination of both features makes atom interferometers with unprecedented sensitivity for inertial forces possible and opens a new era for quantum gas experiments. On January 23, 2017, we created Bose-Einstein condensates in space on the sounding rocket mission MAIUS-1 and conducted 110 experiments central to matter-wave interferometry. In particular, we have explored laser cooling and trapping in the presence of large accelerations as experienced during launch, and have studied the evolution, manipulation and interf…
Optical Shielding of Destructive Chemical Reactions between Ultracold Ground-State NaRb Molecules
2020
Polar quantum gases represent promising platforms for studying many-body physics and strongly correlated systems with possible applications e.g. in quantum simulation or quantum computation. Due to their large permanent electric dipole moment polar molecules in electric field exhibit strong long-range anisotropic dipole-dipole interactions (DDIs). The creation and trapping of ultracold dipolar diatomic molecules of various species are feasible in many experimental groups nowadays. However long time trapping is still a challenge even in the case of the so called nonreactive molecules which are supposed to be immune against inelastic collisions in their absolute ground state [1] . Various hyp…