Search results for " Quantum"

showing 10 items of 3215 documents

Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

2021

We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsEP/ T017325/101 natural sciencesrotationGeneral Relativity and Quantum CosmologyPSR J0537−6910neutron starsLuminosityGravitatational Waves PSR J0537−6910 LIGO VirgoHISTORYLIGOSupernova remnantneutron star010303 astronomy & astrophysicsgravitational waveQCQBpulsarPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/03N157BPhysics/dk/atira/pure/sustainabledevelopmentgoals/partnershipsGravitational waves neutron stars pulsarEPSRCPhysical Sciencesmoment: multipole[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodPSR J0537-6910Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsEphemeris1ST SEARCHGravitational wavesX-raySDG 17 - Partnerships for the GoalsPulsar0103 physical sciences/dk/atira/pure/subjectarea/asjc/1900/1912X-ray: emissiongravitational waves; pulsars; PSR J0537-6910; neutron starsSTFCAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyNeutron Star Interior Composition ExplorerR-MODEGravitational waveVirgopulsar: rotationRCUKAstronomy and AstrophysicsLIGONeutron starVIRGOSUPERNOVA REMNANTSpace and Planetary Sciencegravitational radiation: emissionpulsars/dk/atira/pure/subjectarea/asjc/3100/3103Gravitatational Waves[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

First M87 Event Horizon Telescope Results. III. Data Processing and Calibration

2019

We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5–11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ~1 mJy on baselines to ALMA and ~10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, …

010504 meteorology & atmospheric sciencesgalaxies: jetRadio galaxyAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesgalaxies: individualGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgalaxies: individual: M8701 natural sciencesSubmillimeter ArrayGeneral Relativity and Quantum CosmologyTechniques: high angular resolutionindividual (M87 3C279) [Galaxies]0103 physical sciencesInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysics0105 earth and related environmental sciencesRemote sensingPhysicsEvent Horizon TelescopeSupermassive black hole3C279Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsQuasarBlack hole physicsblack hole physicAstrophysics - Astrophysics of Galaxies3. Good healthhigh angular resolution [Techniques]InterferometryAmplitudeSpace and Planetary ScienceGalaxies: jetsAstrophysics of Galaxies (astro-ph.GA)Techniques: interferometricinterferometric [Techniques]jets [Galaxies]Astrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Galaxies: individual (M87 3C279)Radio wave
researchProduct

First M87 Event Horizon Telescope Results. II. Array and Instrumentation

2019

The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of th…

010504 meteorology & atmospheric sciencesindividual (M87) [galaxies]Event horizonAstronomyAstrophysics::High Energy Astrophysical Phenomenainterferometers [instrumentation]black hole physicsFOS: Physical sciencesgalaxies: individualGeneral Relativity and Quantum Cosmology (gr-qc)galaxies: individual: M8701 natural sciencesGeneral Relativity and Quantum Cosmologygalaxies: individual (M87)instrumentation: interferometer0103 physical sciencesVery-long-baseline interferometryAngular resolutionInstrumentation (computer programming)instrumentation: interferometers010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy Astrophysics0105 earth and related environmental scienceshigh angular resolution [echniques]Event Horizon TelescopePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Supermassive black holeGalaxy: centerhigh angular resolution [techniques]Astronomytechniques: high angular resolutiongravitational lensing: strongAstronomy and Astrophysicscenter [Galaxy]Hydrogen maserblack hole physicAstrophysics - Astrophysics of Galaxiesechniques: high angular resolutionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)strong [gravitational lensing]MillimeterAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]The Astrophysical Journal Letters
researchProduct

First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole

2019

When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux rati…

010504 meteorology & atmospheric sciencesindividual (M87) [galaxies]Event horizonAstronomyblack hole physicsjets [galaxies]galaxies: individualAstrophysicshigh-resolution7. Clean energy01 natural sciencesPhoton sphereGeneral Relativity and Quantum Cosmologyaccretionsagittarius-a-asterisk010303 astronomy & astrophysicsgalactic-centerHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsradio-sourcesaccretion disksGalactic Centergrmhd simulations3. Good healthenergy-distributionsactive [galaxies]AnatomyAstrophysics - High Energy Astrophysical PhenomenaActive galactic nucleusAstrophysics::High Energy Astrophysical Phenomenagalaxies: activeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgalaxies: individual: M87galaxies: individual (M87)Cell and Developmental BiologyGeneral Relativity and Quantum Cosmology0103 physical sciences(M87)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEvent Horizon TelescopeSupermassive black holeghz vlbi observationsfaraday-rotationAstronomy and Astrophysicsgalaxies: jetsAstrophysics - Astrophysics of GalaxiesBlack holeRotating black holeSpace and Planetary SciencegravitationAstrophysics of Galaxies (astro-ph.GA)advection-dominated accretion[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ionized-gas
researchProduct

First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

2019

We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated fro…

010504 meteorology & atmospheric sciencesindividual (M87) [galaxies]Event horizonGeneral relativityAstronomyAstrophysics::High Energy Astrophysical Phenomenablack hole physicsFOS: Physical sciencesgalaxies: individualAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)galaxies: individual: M8701 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologygalaxies: individual (M87)GravitationGeneral Relativity and Quantum Cosmology0103 physical sciences(M87)010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsEvent Horizon TelescopeHigh Energy Astrophysical Phenomena (astro-ph.HE)high angular resolution [techniques]techniques: high angular resolutionAstronomy and Astrophysicsblack hole physicAstrophysics - Astrophysics of GalaxiesGalaxyinterferometric [techniques]Black holeRotating black holeSpace and Planetary Sciencegravitationtechniques: interferometricAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaSchwarzschild radius
researchProduct

Extended two-body problem for rotating rigid bodies

2021

A new technique that utilizes surface integrals to find the force, torque and potential energy between two non-spherical, rigid bodies is presented. The method is relatively fast, and allows us to solve the full rigid two-body problem for pairs of spheroids and ellipsoids with 12 degrees of freedom. We demonstrate the method with two dimensionless test scenarios, one where tumbling motion develops, and one where the motion of the bodies resemble spinning tops. We also test the method on the asteroid binary (66391) 1999 KW4, where both components are modelled either as spheroids or ellipsoids. The two different shape models have negligible effects on the eccentricity and semi-major axis, but…

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectFOS: Physical sciencesAngular velocityDegrees of freedom (mechanics)Two-body problem01 natural sciencesTotal angular momentum quantum number0103 physical sciencesTorqueEccentricity (behavior)010303 astronomy & astrophysicsMathematical Physics0105 earth and related environmental sciencesmedia_commonEarth and Planetary Astrophysics (astro-ph.EP)PhysicsVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430Applied MathematicsMathematical analysisAstronomy and AstrophysicsComputational Physics (physics.comp-ph)Potential energyEllipsoidComputational MathematicsSpace and Planetary ScienceModeling and SimulationPhysics - Computational PhysicsAstrophysics - Earth and Planetary AstrophysicsCelestial Mechanics and Dynamical Astronomy
researchProduct

Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV 3 Sb 5

2020

The anomalous Hall effect soars when Dirac quasiparticles meet frustrated magnetism.

02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceHall effectCondensed Matter::Superconductivity0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsAstrophysics::Galaxy AstrophysicsResearch ArticlesPhysicsMultidisciplinaryCondensed matter physicsScatteringDirac (video compression format)PhysicsSciAdv r-articles021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemimetalFerromagnetismMagnetQuasiparticleSpin Hall effectCondensed Matter::Strongly Correlated Electrons0210 nano-technologyResearch ArticleScience Advances
researchProduct

Two-qubit entanglement dynamics for two different non-Markovian environments

2009

We study the time behavior of entanglement between two noninteracting qubits each immersed in its own environment for two different non-Markovian conditions: a high-$Q$ cavity slightly off-resonant with the qubit transition frequency and a nonperfect photonic band-gap, respectively. We find that revivals and retardation of entanglement loss may occur by adjusting the cavity-qubit detuning, in the first case, while partial entanglement trapping occurs in non-ideal photonic-band gap.

03.67.Mn Entanglement measures witnesses and other characterizationCondensed Matter::Quantum GasesPhysicsQuantum Physicsbusiness.industryDynamics (mechanics)FOS: Physical sciencesMarkov process03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox Bell's inequalities GHZ states etc.)Quantum PhysicsTrappingQuantum entanglementCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiasymbols.namesake03.67.Mn Entanglement measures witnesses and other characterizations; 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox Bell's inequalities GHZ states etc.); 03.67.Lx Quantum computation architectures and implementationsQuantum mechanicsQubitsymbolsPhotonicsQuantum Physics (quant-ph)business03.67.Lx Quantum computation architectures and implementationsMathematical Physics
researchProduct

A continued fraction based approach for the Two-photon Quantum Rabi Model

2019

We study the Two Photon Quantum Rabi Model by way of its spectral functions and survival probabilities. This approach allows numerical precision with large truncation numbers, and thus exploration of the spectral collapse. We provide independent checks and calibration of the numerical results by studying an exactly solvable case and comparing the essential qualitative structure of the spectral functions. We stress that the large time limit of the survival probability provides us with an indicator of spectral collapse, and propose a technique for the detection of this signal in the current and upcoming quantum simulations of the model. E.L. acknowledges fruitful discussions with D. Braak. I.…

0301 basic medicineCurrent (mathematics)Two-photon Quantum Rabi modelCalibration (statistics)TruncationStructure (category theory)Collapse (topology)FOS: Physical scienceslcsh:MedicineelectrodynamicsContinued fractionSignalArticleSettore FIS/03 - Fisica Della Materia03 medical and health sciences0302 clinical medicineFraction (mathematics)Statistical physicslcsh:ScienceQuantumPhysicsQuantum PhysicsMultidisciplinaryatomlcsh:RspaceSpectral function030104 developmental biologylcsh:QQuantum Physics (quant-ph)030217 neurology & neurosurgery
researchProduct