Search results for " Regular"
showing 10 items of 197 documents
Regularity of some method of summation for double sequences
2010
Some generalization of Toeplitz method of summation is introduced for double sequences and condition of regularity of it is obtained.
Nonlinear Robin problems with unilateral constraints and dependence on the gradient
2018
We consider a nonlinear Robin problem driven by the p-Laplacian, with unilateral constraints and a reaction term depending also on the gradient (convection term). Using a topological approach based on fixed point theory (the Leray-Schauder alternative principle) and approximating the original problem using the Moreau-Yosida approximations of the subdifferential term, we prove the existence of a smooth solution.
Positive solutions for parametric singular Dirichlet (p,q)-equations
2020
We consider a nonlinear elliptic Dirichlet problem driven by the (p,q)-Laplacian and a reaction consisting of a parametric singular term plus a Caratheodory perturbation f(z,x) which is (p-1)-linear as x goes to + infinity. First we prove a bifurcation-type theorem describing in an exact way the changes in the set of positive solutions as the parameter lambda>0 moves. Subsequently, we focus on the solution multifunction and prove its continuity properties. Finally we prove the existence of a smallest (minimal) solution u*_lambda and investigate the monotonicity and continuity properties of the map lambda --> u*_lambda.
Exentos de la fiscalidad del General en el Reino de Valencia. La reivindicación de inmunidad por el clero regular.
2020
Les relacions entre la Generalitat valenciana i el clergat regular experimentaren fortes tensions al segle XVII amb motiu de l’exempció fiscal dels eclesiàstics, especialment els mendicants. L’anàlisi d’aquests conflictes ens permet apropar-nos a la realitat efectiva d’un privilegi fiscal poc conegut en la seua incidència i derivacions.
Pairs of nontrivial smooth solutions for nonlinear Neumann problems
2020
Abstract We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator with a reaction term that exhibits strong resonance at infinity. Using variational tools based on the critical point theory, we prove the existence of two nontrivial smooth solutions.
On the condition number of the antireflective transform
2010
Abstract Deconvolution problems with a finite observation window require appropriate models of the unknown signal in order to guarantee uniqueness of the solution. For this purpose it has recently been suggested to impose some kind of antireflectivity of the signal. With this constraint, the deconvolution problem can be solved with an appropriate modification of the fast sine transform, provided that the convolution kernel is symmetric. The corresponding transformation is called the antireflective transform. In this work we determine the condition number of the antireflective transform to first order, and use this to show that the so-called reblurring variant of Tikhonov regularization for …
Approximation of plurisubharmonic functions
2015
We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.
Nonlinear concave-convex problems with indefinite weight
2021
We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.
A Douglas–Rachford method for sparse extreme learning machine
2019
Running couplings from adiabatic regularization
2019
We extend the adiabatic regularization method by introducing an arbitrary mass scale $\mu$ in the construction of the subtraction terms. This allows us to obtain, in a very robust way, the running of the coupling constants by demanding $\mu$-invariance of the effective semiclassical (Maxwell-Einstein) equations. In particular, we get the running of the electric charge of perturbative quantum electrodynamics. Furthermore, the method brings about a renormalization of the cosmological constant and the Newtonian gravitational constant. The running obtained for these dimensionful coupling constants has new relevant (non-logarithmic) contributions, not predicted by dimensional regularization.