Search results for " Regular"

showing 10 items of 197 documents

Regularity of some method of summation for double sequences

2010

Some generalization of Toeplitz method of summation is introduced for double sequences and condition of regularity of it is obtained.

Mathematics::Functional AnalysisMathematics::Operator AlgebrasToeplitz method of summationlcsh:MathematicsDouble sequenceslcsh:QA1-939Method of summationConditions of regularity.Le Matematiche
researchProduct

Nonlinear Robin problems with unilateral constraints and dependence on the gradient

2018

We consider a nonlinear Robin problem driven by the p-Laplacian, with unilateral constraints and a reaction term depending also on the gradient (convection term). Using a topological approach based on fixed point theory (the Leray-Schauder alternative principle) and approximating the original problem using the Moreau-Yosida approximations of the subdifferential term, we prove the existence of a smooth solution.

Mathematics::Functional Analysisfixed pointSettore MAT/05 - Analisi Matematicalcsh:Mathematicsp-LaplacianMathematics::Analysis of PDEsnonlinear regularityconvection termRobin boundary conditionlcsh:QA1-939maximal monotone mapsubdifferential termElectronic Journal of Differential Equations
researchProduct

Positive solutions for parametric singular Dirichlet (p,q)-equations

2020

We consider a nonlinear elliptic Dirichlet problem driven by the (p,q)-Laplacian and a reaction consisting of a parametric singular term plus a Caratheodory perturbation f(z,x) which is (p-1)-linear as x goes to + infinity. First we prove a bifurcation-type theorem describing in an exact way the changes in the set of positive solutions as the parameter lambda>0 moves. Subsequently, we focus on the solution multifunction and prove its continuity properties. Finally we prove the existence of a smallest (minimal) solution u*_lambda and investigate the monotonicity and continuity properties of the map lambda --> u*_lambda.

Minimal solutionSettore MAT/05 - Analisi MatematicaNonlinear maximum principleBifurcation-type theoremSolution multifunctionNonlinear regularity
researchProduct

Exentos de la fiscalidad del General en el Reino de Valencia. La reivindicación de inmunidad por el clero regular.

2020

Les relacions entre la Generalitat valenciana i el clergat regular experimentaren fortes tensions al segle XVII amb motiu de l’exempció fiscal dels eclesiàstics, especialment els mendicants. L’anàlisi d’aquests conflictes ens permet apropar-nos a la realitat efectiva d’un privilegi fiscal poc conegut en la seua incidència i derivacions.

Monarquía Hispánicaconflicte de competències.Hispanic MonarchyKingdom of ValenciaMonarquia Hispànicaconflict of competences.fiscalitatfiscalidadconflicto de competencias.clero regularRegne de Valènciaregular clergytaxationEsglésia Històriaclergat regularReino de Valencia
researchProduct

Pairs of nontrivial smooth solutions for nonlinear Neumann problems

2020

Abstract We consider a nonlinear Neumann problem driven by a nonhomogeneous differential operator with a reaction term that exhibits strong resonance at infinity. Using variational tools based on the critical point theory, we prove the existence of two nontrivial smooth solutions.

Nonlinear systemStrong resonanceSettore MAT/05 - Analisi MatematicaApplied MathematicsC_c-conditionMathematical analysisNeumann boundary conditionDifferential operatorCritical point (mathematics)Second deformation theoremMathematicsNonlinear regularity
researchProduct

On the condition number of the antireflective transform

2010

Abstract Deconvolution problems with a finite observation window require appropriate models of the unknown signal in order to guarantee uniqueness of the solution. For this purpose it has recently been suggested to impose some kind of antireflectivity of the signal. With this constraint, the deconvolution problem can be solved with an appropriate modification of the fast sine transform, provided that the convolution kernel is symmetric. The corresponding transformation is called the antireflective transform. In this work we determine the condition number of the antireflective transform to first order, and use this to show that the so-called reblurring variant of Tikhonov regularization for …

Numerical AnalysisAlgebra and Number TheoryBoundary conditionsTikhonov regularizationMathematical analysisDeconvolutionUpper and lower boundsRegularization (mathematics)ConvolutionTikhonov regularizationTransformation (function)Discrete Mathematics and CombinatoricsApplied mathematicsFast sine transformGeometry and TopologyUniquenessDeconvolutionCondition numberAntireflective transformMathematicsLinear Algebra and its Applications
researchProduct

Approximation of plurisubharmonic functions

2015

We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

Numerical AnalysisPure mathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Type (model theory)01 natural sciences010101 applied mathematicsComputational Mathematicsboundary regularityMergelyan type approximationcontinuous boundaryplurisubharmonic functions0101 mathematicsapproximationAnalysisMathematicsComplex Variables and Elliptic Equations
researchProduct

Nonlinear concave-convex problems with indefinite weight

2021

We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.

Numerical AnalysisPure mathematicslocal minimizerspositive solutionsNehari manifoldApplied MathematicsRegular polygonLagrange multiplierComputational MathematicsNonlinear systemSettore MAT/05 - Analisi Matematicanonlinear regularityAnalysisMathematics
researchProduct

A Douglas–Rachford method for sparse extreme learning machine

2019

Operator splittingSparse regularizationAlgorithmExtreme learning machineMathematicsMethods and Applications of Analysis
researchProduct

Running couplings from adiabatic regularization

2019

We extend the adiabatic regularization method by introducing an arbitrary mass scale $\mu$ in the construction of the subtraction terms. This allows us to obtain, in a very robust way, the running of the coupling constants by demanding $\mu$-invariance of the effective semiclassical (Maxwell-Einstein) equations. In particular, we get the running of the electric charge of perturbative quantum electrodynamics. Furthermore, the method brings about a renormalization of the cosmological constant and the Newtonian gravitational constant. The running obtained for these dimensionful coupling constants has new relevant (non-logarithmic) contributions, not predicted by dimensional regularization.

PhysicsCoupling constantHigh Energy Physics - TheoryNuclear and High Energy PhysicsSemiclassical physicsFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)lcsh:QC1-999General Relativity and Quantum CosmologyRenormalizationGravitational constantDimensional regularizationHigh Energy Physics - Theory (hep-th)Regularization (physics)Adiabatic processlcsh:PhysicsMathematical physics
researchProduct