Search results for " Representation."
showing 10 items of 791 documents
Brauer characters and coprime action
2016
Abstract It is an open problem to show that under a coprime action, the number of invariant Brauer characters of a finite group is the number of the Brauer characters of the fixed point subgroup. We prove that this is true if the non-abelian simple groups satisfy a stronger condition.
Finite Groups with Only One NonLinear Irreducible Representation
2012
Let 𝕂 be an algebraically closed field. We classify the finite groups having exactly one irreducible 𝕂-representation of degree bigger than one. The case where the characteristic of 𝕂 is zero, was done by G. Seitz in 1968.
The structure of the state representation of shift invariant controllable and observable group codes
2000
AbstractIn this paper an investigation on the structure of the canonical trellis section of shift invariant, l-controllable and m-observable group codes is carried out. Necessary and sufficient conditions for a set of group homomorphisms in order that they represent the trellis section of this class of codes are established.
Transportation cost inequalities on path and loop groups
2005
AbstractLet G be a connected Lie group with the Lie algebra G. The action of Cameron–Martin space H(G) on the path space Pe(G) introduced by L. Gross (Illinois J. Math. 36 (1992) 447) is free. Using this fact, we define the H-distance on Pe(G), which enables us to establish a transportation cost inequality on Pe(G). This method will be generalized to the path space over the loop group Le(G), so that we obtain a transportation cost inequality for heat measures on Le(G).
Loop-free Gray code algorithm for the e-restricted growth functions
2011
The subject of Gray codes algorithms for the set partitions of {1,2,...,n} had been covered in several works. The first Gray code for that set was introduced by Knuth (1975) [5], later, Ruskey presented a modified version of [email protected]?s algorithm with distance two, Ehrlich (1973) [3] introduced a loop-free algorithm for the set of partitions of {1,2,...,n}, Ruskey and Savage (1994) [9] generalized [email protected]?s results and give two Gray codes for the set of partitions of {1,2,...,n}, and recently, Mansour et al. (2008) [7] gave another Gray code and loop-free generating algorithm for that set by adopting plane tree techniques. In this paper, we introduce the set of e-restricte…
Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac
1991
We consider a class of indecomposable modules over the Virasoro Lie algebra that we call bounded admissible modules. We get results concerning the center and the dimensions of the weight spaces. We prove that these modules always contain a submodule with one-dimensional weight spaces. From this follows the proof of a conjecture of V. Kac concerning the classification of simple admissible modules.
Non-integrality of the PI-exponent of special Lie algebras
2013
If L is a special Lie algebra over a field of characteristic zero, its sequence of codimensions is exponentially bounded. The PI-exponent measures the exponential rate of growth of such sequence and here we give a first example of a special Lie algebra whose (upper and lower) PI-exponent is non-integer.
On the Codimension Growth of Finite-Dimensional Lie Algebras
1999
Abstract We study the exponential growth of the codimensions cn(L) of a finite-dimensional Lie algebra L over a field of characteristic zero. We show that if the solvable radical of L is nilpotent then lim n → ∞ c n ( L ) exists and is an integer.
LEFT INVARIANT COMPLEX STRUCTURES ON NILPOTENT SIMPLY CONNECTED INDECOMPOSABLE 6-DIMENSIONAL REAL LIE GROUPS
2007
Integrable complex structures on indecomposable 6-dimensional nilpotent real Lie algebras have been computed in a previous paper, along with normal forms for representatives of the various equivalence classes under the action of the automorphism group. Here we go to the connected simply connected Lie group G0 associated to such a Lie algebra 𝔤. For each normal form J of integrable complex structures on 𝔤, we consider the left invariant complex manifold G = (G0, J) associated to G0 and J. We explicitly compute a global holomorphic chart for G and we write down the multiplication in that chart.
A computational criterion for the Kac conjecture
2006
Abstract We give a criterion for the Kac conjecture asserting that the free term of the polynomial counting the absolutely indecomposable representations of a quiver over a finite field of given dimension coincides with the corresponding root multiplicity of the associated Kac–Moody algebra. Our criterion suits very well for computer tests.