Search results for " Resonance"

showing 10 items of 5579 documents

A new 18 GHz room temperature electron cyclotron resonance ion source for highly charged ion beams

2020

An innovative 18 GHz HIISI (Heavy Ion Ion Source Injector) room temperature Electron Cyclotron Resonance (ECR) ion source (ECRIS) has been designed and constructed at the Department of Physics, University of Jyväskylä (JYFL), for the nuclear physics program of the JYFL Accelerator Laboratory. The primary objective of HIISI is to increase the intensities of medium charge states (M/Q ≅ 5) by a factor of 10 in comparison with the JYFL 14 GHz ECRIS and to increase the maximum usable xenon charge state from 35+ to 44+ to serve the space electronics irradiation testing program. HIISI is equipped with a refrigerated permanent magnet hexapole and a noncylindrical plasma chamber to achieve very stro…

010302 applied physicsMaterials scienceIon beamsyklotronittutkimuslaitteetHighly charged ionchemistry.chemical_elementhiukkaskiihdyttimet01 natural sciences7. Clean energyIon sourceElectron cyclotron resonance010305 fluids & plasmasIonXenonchemistry0103 physical sciencesIrradiationAtomic physicsInstrumentationBeam (structure)
researchProduct

Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs

2019

Abstract Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs was demonstrated in α- and β-TCP polymorphs prepared by wet precipitation method under identical conditions and annealed at 700 °C. Calcium phosphates with Mn doping level in the range from 1 to 5 mol% were studied and the formation of desired polymorph was controlled by varying Mn content in as-prepared precipitates. It was found that increasing Mn content resulted in the formation of β-TCP, while α-TCP was obtained with low Mn doping level, whereas a mixture of two polymorphs was obtained for intermediate Mn concentrations. Moreover, doping with Mn ions allowed the synthesis of β-TCP at …

010302 applied physicsMaterials sciencePrecipitation (chemistry)Scanning electron microscopeDopingInfrared spectroscopy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonlaw.inventionlaw0103 physical sciencesMaterials ChemistryCeramics and CompositesFourier transform infrared spectroscopyInductively coupled plasma0210 nano-technologyElectron paramagnetic resonanceNuclear chemistryJournal of the European Ceramic Society
researchProduct

Thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe20Ni80 spin-valve structures

2017

Abstract We investigated the thermal stability of magnetic characteristics of Co/Ag/Fe and Co/Ag/Fe 20 Ni 80 spin-valve structures. Thin film systems were obtained with the help of sputtering method. For the first type of systems two particular thicknesses ( d ML  = 3 and 20 nm) and different disposition of magnetic layers (ML) were used. For the second type different thickness of Ag ( d NML ) spacer layer was used. The research of the crystal structure was performed with the transmission electron microscope. The results demonstrate that every investigated as-deposited sample does not include solid solutions, intermetallic compounds or impurities. It has been found that among the spin-valve…

010302 applied physicsMaterials scienceSpin valveIntermetallicAnalytical chemistry02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsNuclear magnetic resonanceImpuritySputtering0103 physical sciencesThermal stabilityThin film0210 nano-technologyInstrumentationSolid solutionVacuum
researchProduct

The role of seed electrons on the plasma breakdown and preglow of electron cyclotron resonance ion source

2009

The 14 GHz Electron Cyclotron Resonance Ion Source at University of Jyväskylä, Department of Physics (JYFL) has been operated in pulsed mode in order to study the plasma breakdown and preglow effect. It was observed that the plasma breakdown time and preglow characteristics are affected by seed electrons provided by a continuous low power microwave signal at secondary frequency. Sustaining low density plasma during the off-period of high power microwave pulses at the primary frequency shifts the charge state distribution of the preglow transient toward higher charge states. This could be exploited for applications requiring fast and efficient ionization of radioactive elements as proposed f…

010302 applied physicsMaterials science[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Cyclotron resonancechemistry.chemical_elementPlasmaElectron01 natural sciences7. Clean energyElectron cyclotron resonanceIon source010305 fluids & plasmasNeonchemistryIonizationBeta (plasma physics)0103 physical sciencesAtomic physicsInstrumentationComputingMilieux_MISCELLANEOUSReview of Scientific Instruments
researchProduct

Crystalline phase detection in glass ceramics by EPR spectroscopy

2018

The advances of EPR spectroscopy for the detection of activators as well as determining their local structure in the crystalline phase of glass ceramics is considered. The feasibility of d-element (Mn2+, Cu2+) and f-element (Gd3+, Eu2+) ion probes for the investigation of glass ceramics is discussed. In the case of Mn2+, the information is obtained from the EPR spectrum superhyperfine structure, for Gd3+ and Eu2+ probes – from the EPR spectrum fine structure, whereas for Cu2+ ions the changes in the EPR spectrum shape could be useful. The examples of EPR spectra of the above-mentioned probes in oxyfluoride glass ceramics are illustrated. ----/ / /---- This is the preprint version of the fol…

010302 applied physicsMaterials scienceglass ceramicsPhysics and Astronomy (miscellaneous)Динамика кристаллической решеткиGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLocal structureSpectral lineIonlaw.inventionelectron paramagnetic resonancelawparamagnetic ionsPhase (matter)visual_art0103 physical sciencesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]Physical chemistryCeramic0210 nano-technologyElectron paramagnetic resonanceLow Temperature Physics
researchProduct

The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source.

2016

The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the ca…

010302 applied physicsMaterials scienceta114Highly charged ionPlasma01 natural sciencesElectron cyclotron resonanceIon sourcemicrowaves010305 fluids & plasmasIonmikroaallotPhysics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesplasma chamberAtomic physicsInstrumentationBeam (structure)MicrowaveMicrowave cavityThe Review of scientific instruments
researchProduct

Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

2016

The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz Aelectron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10- 100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime. peerReviewed

010302 applied physicsMaterials scienceta114Ion beamCyclotron resonancePlasma01 natural sciencesplasma electronsIon sourceElectron cyclotron resonanceFourier transform ion cyclotron resonance010305 fluids & plasmasMagnetic fieldpulsed operation modePhysics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourceskinetic instabilitiesAtomic physicsInstrumentationIon cyclotron resonanceReview of Scientific Instruments
researchProduct

Recent improvements of the LPSC charge breeder

2017

International audience; PSC has developed the PHOENIX electron cyclotron resonance Charge Breeder since 2000. The performances have been improved over time acting on the 1+ and N+ beam optics, the base vacuum and the 1+ beam injection. A new objective is to update the booster design to enhance high charge state production and 1+ N+ efficiencies, reduce the co-extracted background beam and improve the ion source tunability. The first step, consisting in increasing the peak magnetic field at injection from 1.2 T to 1.6 T was implemented and significant improvement in 1+N+ efficiencies are reported: 12.9% of 23Na8+, 24.2% of 40Ar8+, 13.3% of 132Xe26+ and 13% of 133Cs26+. The next steps of the …

010302 applied physicsMaterials scienceta114Nuclear engineering[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]syklotronitCharge (physics)plasmatekniikka01 natural sciences7. Clean energy010305 fluids & plasmaselectron cyclotron resonanceBreeder (animal)0103 physical sciencesplasma
researchProduct

Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source

2015

Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed

010302 applied physicsMaterials scienceta114Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceBremsstrahlungFOS: Physical sciencesPlasmaElectronphotoelectron emissionRadiation01 natural sciences7. Clean energyElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesPlasma diagnosticsAtomic physicsInstrumentation
researchProduct

New progress of high current gasdynamic ion source (invited).

2016

The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm−3 ) …

010302 applied physicsMaterials scienceta114ta213ion beamsPlasma01 natural sciencesIon sourceElectron cyclotron resonance010305 fluids & plasmaslaw.inventionIonlawGyrotronIonizationgasdynamic ECRIS0103 physical scienceselectron cyclotron resonance ion sourcesThermal emittanceAtomic physicsInstrumentationMicrowaveThe Review of scientific instruments
researchProduct