Search results for " Root"

showing 10 items of 627 documents

Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum

2003

ABSTRACT Fusarium oxysporum includes nonpathogenic strains and pathogenic strains that can induce necrosis or tracheomycosis in plants. The objective of this study was to compare the abilities of a pathogenic strain (Foln3) and a nonpathogenic strain (Fo47) to colonize flax roots and to induce early physiological responses in flax cell culture suspensions. Both strains colonized the outer cortex of the root; however, plant defense reactions, i.e., the presence of wall appositions, osmiophilic material, and collapsed cells, were less frequent and less intense in a root colonized by Foln3 than by Fo47. Early physiological responses were measured in flax cell suspensions confronted with germin…

0106 biological sciencesFusariumCell Culture TechniquesFungus01 natural sciencesApplied Microbiology and BiotechnologyPlant RootsMicrobiologyConidium03 medical and health sciencesPlant MicrobiologyFusariumFlaxFusarium oxysporumExtracellularCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biologyPlant Diseases[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesEcologybiologyInoculationfood and beveragesFungi imperfectiHydrogen PeroxideHydrogen-Ion Concentrationbiology.organism_classificationKinetics[SDV.EE] Life Sciences [q-bio]/Ecology environmentCell cultureREPONSE DE LA PLANTECalcium010606 plant biology & botanyFood ScienceBiotechnology
researchProduct

Morphological and Physiological Root Traits and Their Relationship with Nitrogen Uptake in Wheat Varieties Released from 1915 to 2013

2021

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univ…

0106 biological sciencesGenotypeN fertilizer recoverymedia_common.quotation_subjectN uptake efficiencychemistry.chemical_elementRoot systemengineering.materialBiology01 natural sciencesAdaptabilityHuman fertilizationRoot lengthgenotypesWheat rootmedia_commonbusiness.industrySIsotopic tracerAgriculture04 agricultural and veterinary sciencesNitrogenAgronomychemistryAgriculture040103 agronomy & agricultureengineering0401 agriculture forestry and fisheriesFertilizerwheat rootsbusinessAgronomy and Crop Science010606 plant biology & botanyAgronomy
researchProduct

Genetic Transformation of Serratula tinctoria (Dyer’s Savory) for Ecdysteroid Production

1999

Serratula tinctoria is a perennial plant of the Compositae family with medium-sized, serrated leaves and purple flowers (Loste 1937). This plant, also known as dyer’s savory, is widespread in Europe but with an irregular distribution. Inflorescences (capitula) are purple and are usually unisexual, staminate, or pistillate. In Europe, the flowering period extends from July to September. More than 40 species have been described in Europe, North Africa, and Asia. The plants produce large amounts of secondary metabolites, in particular ecdysteroids at very high concentration in roots (up to 2% dry wt.), in flowers, and in leaves (Bathori et al. 1986; Rudel et al. 1992; Corio-Costet et al. 1993b…

0106 biological sciencesHigh concentration0303 health sciencesEcdysteroidPolypodine BbiologyPerennial plant[SDV]Life Sciences [q-bio]Stamenbiology.organism_classification01 natural sciences03 medical and health scienceschemistry.chemical_compoundSerratulaInflorescencechemistryBotanyHairy root cultureComputingMilieux_MISCELLANEOUS030304 developmental biology010606 plant biology & botany
researchProduct

Colonization of adventitious roots ofMedicago truncatulabyPseudomonas fluorescensC7R12 as affected by arbuscular mycorrhiza

2008

Pseudomonas fluorescens C7R12 was previously shown to promote colonization of Medicago truncatula roots by Glomus mosseae BEG12. To gain more insight into the interaction between C7R12 and BEG12, the cell organization of C7R12 was characterized on adventitious roots mycorrhized or not with BEG12 and on extraradical hyphae. Bacterial cell observations were made using the immuno-fluorescence technique and confocal laser scanning microscopy. Five types of cell organization, so-called organization types (OT), were identified: small or large single cells, cells by pair and cells in microcolonies or in strings. The frequencies of each OT on the roots were expressed as the percentage of observatio…

0106 biological sciencesHyphaARBUSCULAR MYCORRHIZAPseudomonas fluorescensPlant Roots01 natural sciencesMicrobiologyIMMUNOLOCALIZATIONGlomeromycotaMycorrhizaeBotanyGeneticsColonizationRELATION PLANTE-MICROORGANISMEGlomeromycotaMolecular BiologySoil MicrobiologyGlomusMedicagobiologyGLOMUS MOSSEAE1. No poverty04 agricultural and veterinary sciencesbiology.organism_classificationMedicago truncatulaPSEUDOMONAS FLUORESCENSArbuscular mycorrhiza[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology040103 agronomy & agriculture0401 agriculture forestry and fisheriesMEDICAGO TRUNCATULAROOT COLONIZATION010606 plant biology & botanyFEMS Microbiology Letters
researchProduct

Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress.

2021

International audience; Metal trace elements accumulate in soils mainly because of anthropic activities, leading living organisms to develop strategies to handle metal toxicity. Plants often associate with root endophytic fungi, including nonmycorrhizal fungi, and some of these organisms are associated with metal tolerance. The lack of synthetic analyses of plant-endophyte-metal tripartite systems and the scant consideration for taxonomy led to this review aiming (1) to inventory non-mycorrhizal root fungal endophytes described with respect to their taxonomic diversity and (2) to determine the mutualistic roles of these plant-fungus associations under metal stress. More than 1500 species in…

0106 biological sciencesHypocrealesMetal toxicity[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomy01 natural sciencesPlant RootsPlant use of endophytic fungi in defense03 medical and health sciencesAscomycotaPhylogeneticsBotanyGeneticsEndophytesPleosporalesSymbiosisEcology Evolution Behavior and SystematicsPhylogeny030304 developmental biology0303 health sciencesbiologyFungi15. Life on landPlantsbiology.organism_classificationInfectious Diseases[SDE]Environmental SciencesTaxonomy (biology)Metallic trace element Fungal endophytes Taxonomy Accumulation Mutualism Plant-fungi interactions010606 plant biology & botanyFungal biology
researchProduct

Priming: getting ready for battle

2006

International audience; Infection of plants by necrotizing pathogens or colonization of plant roots with certain beneficial microbes causes the induction of a unique physiological state called “priming.” The primed state can also be induced by treatment of plants with various natural and synthetic compounds. Primed plants display either faster, stronger, or both activation of the various cellular defense responses that are induced following attack by either pathogens or insects or in response to abiotic stress. Although the phenomenon has been known for decades, most progress in our understanding of priming has been made over the past few years. Here, we summarize the current knowledge of p…

0106 biological sciencesInsectaPhysiology[SDV]Life Sciences [q-bio]beta-Aminobutyric acidPriming (agriculture)01 natural sciencesPlant Physiological Phenomenachemistry.chemical_compoundsalicylic acid.ethylenePlant biology (Botany)0303 health sciencesAminobutyratesJasmonic acidfood and beveragesGeneral MedicinePlantsLife sciencesmycorrhizal fungimycorhizeBiologieSignal Transductionacide jasmoniquesalicylic acidBiologyMicrobiology03 medical and health sciencesβ-aminobutyric acidMycorrhizal fungiAnimalsβ-aminobutyric acid;bacterial lipopolysaccharides;ethylene;jasmonic acid;mycorrhizal fungi;salicylic acid.Plant Physiological Phenomena030304 developmental biologyacide aminobutyriquePlant rootsAbiotic stressjasmonic acidfungiEthylenesCellular defenseImmunity Innateß-aminobutyric acidbacterial lipopolysaccharideschemistryéthylènefungiAgronomy and Crop Science010606 plant biology & botanyMolecular Plant-Microbe Interactions
researchProduct

Integrated management strategies of Meloidogyne incognita and Pseudopyrenochaeta lycopersici on tomato using a Bacillus firmus-based product and two …

2019

Abstract Because of the restrictions on chemical pesticide use and their negative effects on the environment, as well as on human and animal health, alternative strategies for plant pest and pathogen managements are highly desirable. The objective of this work was to evaluate the suitability of a commercial formulation of Bacillus firmus strain 1-1582, applied either alone or in combination with oxamyl or fosthiazate, to control the southern root-knot nematode Meloidogyne incognita and the fungal plant pathogen Pseudopyrenochaeta lycopersici under greenhouse conditions during two tomato crop cycles. Application of B. firmus suppressed nematode population levels during the second crop cycle …

0106 biological sciencesIntegrated pest managementBacillus firmuPopulationOxamyl01 natural sciencesTomatoCropchemistry.chemical_compoundMeloidogyne incognitaeducationSouthern root-knot nematodeeducation.field_of_studybiologyCorky rootCrop yieldfungiSettore AGR/12 - Patologia Vegetalefood and beveragesIntegrated pest managementSoil pathogenbiology.organism_classificationNematicide010602 entomologyHorticultureBiopesticidechemistryBacillus firmusAgronomy and Crop Science010606 plant biology & botanyCrop Protection
researchProduct

Response of grapevine (Cabernet Sauvignon cv) to above ground and subsurface drip irrigation under arid conditions

2018

Abstract The response of wine grapes to irrigation systems was investigated in a Cabernet Sauvignon/140 Ru vineyard in sandy loam soil in Sicily during a two-year study. Two different drip irrigation systems were evaluated: one surface drip and two subsurface drip irrigation systems, with the trickle line located at different distances from vine trunks. Vegetative and quantitative parameters, must quality and root distribution were compared among irrigation treatments. During the two study years, irrigation of grapevines via a subsurface drip system resulted in greater water use efficiency without affecting must composition. Establishing the trickle line near the trunk positively influenced…

0106 biological sciencesIrrigationDeficit irrigationSoil ScienceDrip irrigation01 natural sciencesVineyardRegulated deficit irrigationYield (wine)Root distributionWater-use efficiencyTRICKLEEarth-Surface ProcessesWater Science and TechnologyPredawn leaf water potentialPredawn leaf water potential; Regulated deficit irrigation; Root distribution; Water use efficiency; Yield and grape quality;Water use efficiency04 agricultural and veterinary sciencesSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeAgronomyLoamYield and grape quality040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceAgronomy and Crop Science010606 plant biology & botany
researchProduct

Water-Related Variables for Predicting Yield of Apple under Deficit Irrigation

2019

, it did not reduce yield and gas exchange. In &lsquo

0106 biological sciencesIrrigationStomatal conductanceDeficit irrigationPlant Scienceleaf water saturation deficitHorticulturelcsh:Plant culture01 natural sciencesEvapotranspirationtranspiration productivitylcsh:SB1-1110DehydrationCultivarTranspirationMathematicsCrop yield04 agricultural and veterinary sciencesSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboreepartial root zone dryingHorticulturetranspiration efficiencystomatal conductance040103 agronomy & agriculture0401 agriculture forestry and fisheriesDNS root zoneWater use010606 plant biology & botanyHorticulturae
researchProduct

Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence

2013

'Summary' 26 I. 'Casting for a scenario' 26 II. 'Nominees for a preliminary role' 27 III. 'Nominees for a leading role' 32 IV. 'Future artists' 37   'Acknowledgements' 38   References 38 Summary The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a …

0106 biological sciencesLASER MICRODISSECTIONPhysiologycarbon (C)phosphorus (P)[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesPlant RootsGlomeromycotaMEDICAGO-TRUNCATULA ROOTSRNA interferenceMycorrhizaeLOTUS-JAPONICUSPlastidsMycorrhizaFUNGUS GLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSIONGenetics0303 health sciencesGene knockdownFungal proteinPHOSPHATE TRANSPORTERarbuscular mycorrhizaCADMIUM STRESS ALLEVIATIONfood and beveragesSTRIGOLACTONE BIOSYNTHESISArbuscular mycorrhizaEPIDERMAL-CELLSProtein Transportmembranes[SDE]Environmental SciencesSignal TransductionINTRACELLULAR ACCOMMODATIONHyphaeBiologybiotrophyPhosphatesFungal Proteins03 medical and health sciencesSymbiosisBotanyGene silencing[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGlomeromycotaSymbiosis030304 developmental biologyfungi15. Life on landbiology.organism_classificationCarbonsilencing010606 plant biology & botany
researchProduct