Search results for " Rotation"
showing 10 items of 278 documents
Spin down during quiescence of the fastest known accretion-powered pulsar
2010
We present a timing solution for the 598.89 Hz accreting millisecond pulsar, IGR J00291+5934, using Rossi X-ray Timing Explorer data taken during the two outbursts exhibited by the source on 2008 August and September. We estimate the neutron star spin frequency and we refine the system orbital solution. To achieve the highest possible accuracy in the measurement of the spin frequency variation experienced by the source in-between the 2008 August outburst and the last outburst exhibited in 2004, we re-analysed the latter considering the whole data set available. We find that the source spins down during quiescence at an average rate of ��dot_{sd}=(-4.1 +/- 1.2)E-15 Hz/s. We discuss possible …
The discovery of the 401 Hz accreting millisecond pulsar IGR J17498-2921 in a 3.8 h orbit
2011
We report on the detection of a 400.99018734(1) Hz coherent signal in the Rossi X-ray Timing Explorer light curves of the recently discovered X-ray transient, IGR J17498-2921. By analysing the frequency modulation caused by the orbital motion observed between August 13 and September 8, 2011, we derive an orbital solution for the binary system with a period of 3.8432275(3) hr. The measured mass function, f(M_2, M_1, i)=0.00203807(8) Msun, allows to set a lower limit of 0.17 Msun on the mass of the companion star, while an upper limit of 0.48 Msun is set by imposing that the companion star does not overfill its Roche lobe. We observe a marginally significant evolution of the signal frequency …
The spin and orbit of the newly discovered pulsar IGR J17480-2446
2011
We present an analysis of the spin and orbital properties of the newly discovered accreting pulsar IGR J17480-2446, located in the globular cluster Terzan 5. Considering the pulses detected by the Rossi X-ray Timing Explorer at a period of 90.539645(2) ms, we derive a solution for the 21.27454(8) hr binary system. The binary mass function is estimated to be 0.021275(5) Msun, indicating a companion star with a mass larger than 0.4 Msun. The X-ray pulsar spins up while accreting at a rate of between 1.2 and 1.7E-12 Hz/s, in agreement with the accretion of disc matter angular momentum given the observed luminosity. We also report the detection of pulsations at the spin period of the source dur…
Galactic rotation curves in hybrid metric-Palatini gravity
2013
Generally, the dynamics of test particles around galaxies, as well as the corresponding mass deficit, is explained by postulating the existence of a hypothetical dark matter. In fact, the behavior of the rotation curves shows the existence of a constant velocity region, near the baryonic matter distribution, followed by a quick decay at large distances. In this work, we consider the possibility that the behavior of the rotational velocities of test particles gravitating around galaxies can be explained within the framework of the recently proposed hybrid metric-Palatini gravitational theory. The latter is constructed by modifying the metric Einstein-Hilbert action with an f(R) term in the P…
Asymptotically safe Lorentzian gravity.
2011
The gravitational asymptotic safety program strives for a consistent and predictive quantum theory of gravity based on a non-trivial ultraviolet fixed point of the renormalization group (RG) flow. We investigate this scenario by employing a novel functional renormalization group equation which takes the causal structure of space-time into account and connects the RG flows for Euclidean and Lorentzian signature by a Wick-rotation. Within the Einstein-Hilbert approximation, the $\beta$-functions of both signatures exhibit ultraviolet fixed points in agreement with asymptotic safety. Surprisingly, the two fixed points have strikingly similar characteristics, suggesting that Euclidean and Loren…
Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities
2016
We analytically investigate backreaction by a quantum scalar field on two rotating Ba\~nados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we f…
Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell
2020
A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case wh…
Wick Theorem for General Initial States
2012
We present a compact and simplified proof of a generalized Wick theorem to calculate the Green's function of bosonic and fermionic systems in an arbitrary initial state. It is shown that the decomposition of the non-interacting $n$-particle Green's function is equivalent to solving a boundary problem for the Martin-Schwinger hierarchy; for non-correlated initial states a one-line proof of the standard Wick theorem is given. Our result leads to new self-energy diagrams and an elegant relation with those of the imaginary-time formalism is derived. The theorem is easy to use and can be combined with any ground-state numerical technique to calculate time-dependent properties.
Absolute Chiral Sensing in Dielectric Metasurfaces Using Signal Reversals.
2020
Sensing molecular chirality at the nanoscale has been a long-standing challenge due to the inherently weak nature of chiroptical signals, and nanophotonic approaches have proven fruitful in accessing these signals. However, in most cases, absolute chiral sensing of the total chiral refractive index has not been possible, while the strong inherent signals from the nanostructures themselves obscure the weak chiroptical signals. Here, we propose a dielectric metamaterial system that overcomes these limitations and allows for absolute measurements of the total chirality, and the possibility for a crucial signal reversal that enables chirality measurements without the need for sample removal. As…
Experimental Assessment of the Backoff Behavior of Commercial IEEE 802.11b Network Cards
2007
It has been observed that different IEEE 802.11 commercial cards produced by different vendors experience different performance, either when accessing alone the channel, as well as when competing against each other. These differences persist also when thorough measurement methodologies (such as RF shielding, laptop rotation, etc) are applied, and alignment of the environmental factors (same laptop models, traffic generators, etc) is carried out. This paper provides an extensive experimental characterization of the backoff operation of six commercial NIC cards. It suggests a relevant methodological approach, namely a repeatable, well defined, set of experiments, for such a characterization. …