Search results for " SIMULATIONS"
showing 10 items of 243 documents
Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment
2014
XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…
Calcium mediated polyelectrolyte adsorption on like-charged surfaces.
2011
International audience; Monte Carlo simulations within the primitive model of calcium-mediated adsorption of linear and comb polyelectrolytes onto like-charged surfaces are described, focusing on the effect of calcium and polyion concentrations as well as on the ion pairing between polymers and calcium ions. We use a combination of Monte Carlo simulations and experimental data from titration and calcium binding to quantify the ion pairing. The polymer adsorption is shown to occur as a result of surface overcharging by Ca2+ and ion pairing between charged monomers and Ca2+. In agreement with experimental observations, the simulations predict that the polymer adsorption isotherm goes through …
Thermal disorder and correlation effects in anti-perovskite-type copper nitride
2017
This work has been supported by the Latvian National Research Program IMIS2. The EXAFS experiment has been financed from the European Community's Seventh Framework Programme under grant agreement No. 226716 (Project I-20100098 EC). J.T. also gratefully acknowledges support from the National Science Foundation under the DMREF program Grant No. CHE-1534184.
The positioning system of the ANTARES Neutrino Telescope
2012
The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning sys…
Electron quantization in arbitrarily shaped Au islands on MgO thin films
2013
Low-temperature scanning tunneling microscopy has been employed to analyze the formation of quantum well states (QWS) in two-dimensional gold islands, containing between 50 and 200 atoms, on MgO thin films. The energy position and symmetry of the eigenstates are revealed from conductance spectroscopy and imaging. The majority of the QWS originates from overlapping Au 6p orbitals in the individual atoms and is unoccupied. Their characteristic is already reproduced with simple particle-in-a-box models that account for the symmetry of the islands (rectangular, triangular, or linear). However, better agreement is achieved when considering the true atomic structure of the aggregates via a densit…
CGCG 480-022: A Distant Lonesome Merger?
2006
[EN]We present a complete analysis, which includes morphology, kinematics, stellar populations, and N-body simulations, of CGCG 480-022, the most distant (cz = 14,317 km s-1) isolated galaxy studied so far in such detail. The results all support the hypothesis that this galaxy has suffered a major merger event with a companion of ~0.1 times its mass. Morphology reveals the presence of a circumnuclear ring and possibly further ring debris. The radial velocity curve looks symmetrical, while the velocity dispersion increases with radius, reaching values that do not correspond to a virialized system. Moreover, this galaxy deviates significantly from the fundamental plane and the Faber-Jackson r…
Histopathology of Skeletal Muscle in a Distal Motor Neuropathy Associated with a Mutant CCT5 Subunit: Clues for Future Developments to Improve Differ…
2023
Genetic chaperonopathies are rare but, because of misdiagnosis, there are probably more cases than those that are recorded in the literature and databases. This occurs because practitioners are generally unaware of the existence and/or the symptoms and signs of chaperonopathies. It is necessary to educate the medical community about these diseases and, with research, to unveil their mechanisms. The structure and functions of various chaperones in vitro have been studied, but information on the impact of mutant chaperones in humans, in vivo, is scarce. Here, we present a succinct review of the most salient abnormalities of skeletal muscle, based on our earlier report of a patient who carried…
A pulsed high-voltage decelerator system to deliver low-energy antiprotons
2021
International audience; The GBAR (Gravitational Behavior of Antihydrogen at Rest) experiment at CERN requires efficient deceleration of 100 keV antiprotons provided by the new ELENA synchrotron ring to synthesize antihydrogen. This is accomplished using electrostatic deceleration optics and a drift tube that is designed to switch from -99 kV to ground when the antiproton bunch is inside – essentially a charged particle “elevator” – producing a 1 keV pulse. We describe the simulation, design, construction and successful testing of the decelerator device at -92 kV on-line with antiprotons from ELENA.
Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer
2016
In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its…
Planktonic stages of small pelagic fishes (Sardinella aurita and Engraulis encrasicolus) in the central Mediterranean Sea: The key role of physical f…
2018
Abstract Multidisciplinary studies are recently aiming to define diagnostic tools for fishery sustainability by coupling ichthyoplanktonic datasets, physical and bio-geochemical oceanographic measurements, and ocean modelling. The main goal of these efforts is to understand those processes that control the dispersion and fate of fish larvae and eggs, and thus tuning the inter-annual variability of the biomass of small pelagic fish species. In this paper we analyse the distribution of eggs and larvae as well as the biological features of the two species of pelagic fish, Engraulis encrasicolus and Sardinella aurita in the north-eastern sector of the Sicily Channel (Mediterranean Sea) from ich…