Search results for " STEM"

showing 10 items of 2170 documents

Microtubule disruption changes endothelial cell mechanics and adhesion

2019

AbstractThe interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 3…

0301 basic medicineCell biologyIntravital MicroscopyScienceConfocalCellBiophysicsCell Culture Techniques02 engineering and technologyMicroscopy Atomic ForceMechanotransduction CellularMicrotubulesArticleUmbilical veinCell Line03 medical and health sciencesMicrotubuleCell AdhesionHuman Umbilical Vein Endothelial CellsFluorescence microscopemedicineHumansCytoskeletonCytoskeletonMicroscopy ConfocalMultidisciplinaryDose-Response Relationship DrugChemistryPhysicsQRMechanicsAdhesion021001 nanoscience & nanotechnologyMaterials scienceApplied physicsEndothelial stem cell030104 developmental biologymedicine.anatomical_structureMicroscopy FluorescenceMedicineBiomaterials - cellsColchicine0210 nano-technologyBiological physicsScientific Reports
researchProduct

CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin

2021

Summary Limited therapeutic options are available for advanced colorectal cancer (CRC). Herein, we report that exposure to a neo-synthetic bis(indolyl)thiazole alkaloid analog, nortopsentin 234 (NORA234), leads to an initial reduction of proliferative and clonogenic potential of CRC sphere cells (CR-CSphCs), followed by an adaptive response selecting the CR-CSphC-resistant compartment. Cells spared by the treatment with NORA234 express high levels of CD44v6, associated with a constitutive activation of Wnt pathway. In CR-CSphC-based organoids, NORA234 causes a genotoxic stress paralleled by G2-M cell cycle arrest and activation of CHK1, driving the DNA damage repair of CR-CSphCs, regardless…

0301 basic medicineCell cycle checkpointColorectal cancerScienceSettore MED/50 - Scienze Tecniche Mediche Applicate02 engineering and technologyGenotoxic StressArticleMolecular Physiology03 medical and health sciencesSettore MED/04 - PATOLOGIA GENERALERabusertibmedicineClonogenic assayCancerMultidisciplinarybusiness.industryQWnt signaling pathwayDrugsCancerCell Biology021001 nanoscience & nanotechnologymedicine.disease030104 developmental biologyCancer researchSettore MED/46 - Scienze Tecniche Di Medicina Di LaboratorioStem cell0210 nano-technologybusinesscolorectal cancer cancer stem cells alkaloids DNA damage repair CHK1.iScience
researchProduct

Human Dental Pulp Stem Cells Exhibit Different Biological Behaviours in Response to Commercial Bleaching Products

2018

The purpose of this study was to evaluate the diffusion capacity and the biological effects of different bleaching products on human dental pulp stem cells (hDPSCs). The bleaching gel was applied for 90, 30 or 15 min to enamel/dentine discs that adapted in an artificial chamber. The diffusion of hydrogen peroxide (HP) was analysed by fluorometry and the diffusion products were applied to hDPSCs. Cell viability, cell migration and cell morphology assays were performed using the eluates of diffusion products. Finally, cell apoptosis and the expression of mesenchymal stem cell markers were analysed by flow cytometry. Statistical analysis was performed using analysis of variance and Kruskal&nda…

0301 basic medicineCell morphologylcsh:TechnologyArticleFlow cytometry03 medical and health scienceschemistry.chemical_compound0302 clinical medicinestomatognathic systemstem cellsDental pulp stem cellsmedicineGeneral Materials ScienceViability assaylcsh:MicroscopyHydrogen peroxidelcsh:QC120-168.85bleaching productslcsh:QH201-278.5Enamel paintmedicine.diagnostic_testlcsh:TMesenchymal stem celldiffusion030206 dentistryMolecular biologystomatognathic diseases030104 developmental biologychemistrylcsh:TA1-2040visual_artvisual_art.visual_art_mediumcytotoxicitylcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringStem celldental pulplcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale.

2018

EpCAM, known as an epithelial cell adhesion molecule, plays an essential role in cell adhesion, migration, metastasis and cell signalling. Rather than acting as an apoptosis antagonist, it induces cellular proliferation that impacts the cell cycle, and as a signalling transducer it uses and enhances the Wnt pathway, which is significantly relevant in cell renewal and cancer. EpCAM has become a marker of circulating tumour cells (CTCs) in lung cancer due to its specificity, and its high and stable expression level. Recent findings have allowed us to relearn and discover EpCAM again as a CSCs marker by demonstrating its role in human epithelial cancer progression. In line with this, the focus…

0301 basic medicineCell signalingEpithelial-Mesenchymal Transitionlaw.inventionMetastasis03 medical and health scienceschemistry.chemical_compound0302 clinical medicinelawCancer stem cellAntigens NeoplasmCell Line TumorNeoplasmsmedicineCell AdhesionAnimalsHumansCell Proliferationbusiness.industryWnt signaling pathwayCancerEpithelial cell adhesion moleculeHematologyCell cyclemedicine.diseaseEpithelial Cell Adhesion MoleculeNeoplastic Cells Circulating030104 developmental biologyOncologychemistry030220 oncology & carcinogenesisCancer researchSuppressorbusinessSignal TransductionCritical reviews in oncology/hematology
researchProduct

Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon-gamma

2016

Abstract Conversion of astrocytes to neurons, via de-differentiation to neural stem cells (NSC), may be a new approach to treat neurodegenerative diseases and brain injuries. The signaling factors affecting such a cell conversion are poorly understood, and they are hard to identify in complex disease models or conventional cell cultures. To address this question, we developed a serum-free, strictly controlled culture system of pure and homogeneous “astrocytes generated from murine embryonic stem cells (ESC).” These stem cell derived astrocytes (mAGES), as well as standard primary astrocytes resumed proliferation upon addition of FGF. The signaling of FGF receptor tyrosine kinase converted G…

0301 basic medicineCell signalingNeurogenesisBiologyInterferon-gammaMice03 medical and health sciences0302 clinical medicineNeural Stem CellsNeurosphereddc:570medicineAnimalsCell ProliferationEpidermal Growth FactorMultipotent Stem CellsCell CycleNeurogenesisMouse Embryonic Stem CellsCell BiologyAnatomyCell DedifferentiationEmbryonic stem cellNeural stem cellCell biologyNeuroepithelial cell030104 developmental biologymedicine.anatomical_structureGene Expression RegulationAstrocytesMolecular MedicineFibroblast Growth Factor 2Stem cell030217 neurology & neurosurgerySignal TransductionDevelopmental BiologyAstrocyte
researchProduct

Increasing Neural Stem Cell Division Asymmetry and Quiescence Are Predicted to Contribute to the Age-Related Decline in Neurogenesis.

2018

Summary: Adult murine neural stem cells (NSCs) generate neurons in drastically declining numbers with age. How cellular dynamics sustain neurogenesis and how alterations with age may result in this decline are unresolved issues. We therefore clonally traced NSC lineages using confetti reporters in young and middle-aged adult mice. To understand the underlying mechanisms, we derived mathematical models that explain observed clonal cell type abundances. The best models consistently show self-renewal of transit-amplifying progenitors and rapid neuroblast cell cycle exit. In middle-aged mice, we identified an increased probability of asymmetric stem cell divisions at the expense of symmetric di…

0301 basic medicineCell typeAgingNeurogenesisBiologyAdult Neurogenesis ; Computational Model ; Lineage Tracing ; Lineage Tree Simulation ; Model Averaging ; Moment EquationsModels BiologicalGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMiceNeuroblastNeural Stem CellsAnimalsCell LineageComputer SimulationProgenitor celllcsh:QH301-705.5Stochastic ProcessesNeurogenesisAsymmetric Cell DivisionCell CycleReproducibility of ResultsCell cycleNeural stem cellClone Cells030104 developmental biologylcsh:Biology (General)Stem cellNeuroscienceHomeostasisCell reports
researchProduct

Taking Advantage of Nature’s Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?

2016

Irreversible functional deficits in multiple sclerosis (MS) are directly correlated to axonal damage and loss. Neurodegeneration results from immune-mediated destruction of myelin sheaths and subsequent axonal demyelination. Importantly, oligodendrocytes, the myelinating glial cells of the central nervous system, can be replaced to some extent to generate new myelin sheaths. This endogenous regeneration capacity has so far mainly been attributed to the activation and recruitment of resident oligodendroglial precursor cells. As this self-repair process is limited and increasingly fails while MS progresses, much interest has evolved regarding the development of remyelination-promoting strateg…

0301 basic medicineCell typeMultiple Sclerosisgliaadult neural stem cellsoligodendrocytesReviewBiologyRegenerative MedicineCatalysisInorganic ChemistryWhite matterlcsh:Chemistry03 medical and health sciencesMyelin0302 clinical medicineNeural Stem CellsmedicineAnimalsHumansPhysical and Theoretical ChemistryRemyelinationMolecular Biologylcsh:QH301-705.5SpectroscopyMyelin SheathMultiple sclerosisRegeneration (biology)Organic ChemistryEndogenous regenerationGeneral Medicinedifferentiationmedicine.diseaseNeural stem cellComputer Science ApplicationsNerve Regeneration030104 developmental biologymedicine.anatomical_structureremyelinationlcsh:Biology (General)lcsh:QD1-999nervous systemprecursor cellsImmunologyNeurosciencecell fate determinationwhite matter030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

Comparative study of the osteogenic potential of mesenchymal stem cells derived from different sources

2017

Background Mesenchymal stem cells (MSCs) can regenerate missing tissues and treat diseases. Hence, the current work aimed to compare the proliferation rate and the osteogenic differentiation potential of bone marrow MSCs (BMSCs), gingival MSCs (GMSCs) and submandibular MSCs (SMSCs). Material and Methods MSCs derived from bone marrow, gingiva and submandibular salivary gland were isolated and cultured from rats. The proliferation capacity was judged by MTT proliferation Assay. Osteogenic differentiation was assessed by Alzarin red stain and quantitative RT-PCR was performed for Runx-2 and MMP-13. Results The highest significant proliferation was estimated in the BMSCs compared to GMSCs and S…

0301 basic medicineCell typeOral Medicine and PathologySalivary glandResearchMesenchymal stem cellProliferation assayBiology:CIENCIAS MÉDICAS [UNESCO]Bone tissueStain03 medical and health sciences030104 developmental biologymedicine.anatomical_structurestomatognathic systemProliferation rateUNESCO::CIENCIAS MÉDICASCancer researchmedicineBone marrowGeneral DentistryJournal of Clinical and Experimental Dentistry
researchProduct

A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem ce…

2016

AbstractHutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process an…

0301 basic medicineCell typecongenital hereditary and neonatal diseases and abnormalitiesPhenotypic screeningInduced Pluripotent Stem CellsRetinoic acidTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundProgeriaOsteogenesis[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]medicineHumansInduced pluripotent stem cellChildIsotretinoinGeneticsProgeriaMultidisciplinaryintegumentary systemGuided Tissue RegenerationMesenchymal stem cellnutritional and metabolic diseasesAging PrematureCell DifferentiationMesenchymal Stem Cellsmedicine.diseaseProgerinAlkaline PhosphataseLamin Type A3. Good healthCell biologyHigh-Throughput Screening Assays030104 developmental biologychemistryGene Expression Regulation[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Alkaline phosphataseScientific Reports
researchProduct

Collective Infection of Cells by Viral Aggregates Promotes Early Viral Proliferation and Reveals a Cellular-Level Allee Effect

2018

In addition to the conventional release of free, individual virions, virus dispersal can involve multi-virion assemblies that collectively infect cells. However, the implications of collective infection for viral fitness remain largely unexplored. Using vesicular stomatitis virus, here, we compare the fitness of free versus saliva-aggregated viral particles. We find that aggregation has a positive effect on early progeny production, conferring a fitness advantage relative to equal numbers of free particles in most cell types. The advantage of aggregation resides, at least partially, in increasing the cellular multiplicity of infection. In mouse embryonic fibroblasts, the per capita, short-t…

0301 basic medicineCell typevirusesCellBiologyVirus ReplicationArticleGeneral Biochemistry Genetics and Molecular BiologyVirusMice03 medical and health sciencessymbols.namesakeMultiplicity of infectionChlorocebus aethiopsmedicineAnimalsHumansSelection GeneticSalivaVero CellsAllee effectInnate immune systemVesiculovirusbiology.organism_classificationEmbryonic stem cellCell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureA549 CellsVesicular stomatitis virussymbolsFemaleGeneral Agricultural and Biological SciencesCurrent Biology
researchProduct