Search results for " Solar cell"

showing 10 items of 309 documents

Fabrication and Photoelectrochemical Behavior of Ordered CIGS Nanowire Arrays for Application in Solar Cells

2010

In this work, we report some preliminary results concerning the fabrication of quaternary copper, indium, gallium, and selenium CIGS nanowires that were grown inside the channels of an anodic alumina membrane by one-step potentiostatic deposition at different applied potentials and room temperature. A tunable nanowire composition was achieved through a manipulation of the applied potential and electrolyte composition. X-ray diffraction analysis showed that nanowires, whose chemical composition was determined by energy-dispersive spectroscopy analysis, were amorphous. A composition of Cu0.203In0.153Ga0.131Se0.513, very close to the stoichiometric value, was obtained. These nanostructures wer…

FabricationMaterials scienceGeneral Chemical EngineeringNanowirechemistry.chemical_elementNanotechnologyCopper Indium Gallium Selenidechemistry.chemical_compoundCopper Indium Gallium Selenide; Solar Cells; Template Synthesis; Electrodeposition; Anodic Alumina MembranesElectrodepositionElectrochemistryGeneral Materials ScienceElectrical and Electronic EngineeringPhysical and Theoretical ChemistryGalliumAnodic Alumina MembranesPhotocurrentbusiness.industryCopper indium gallium selenide solar cellsAmorphous solidSettore ING-IND/23 - Chimica Fisica ApplicatachemistrySolar CellTemplate SynthesiOptoelectronicsbusinessCopper indium gallium selenideIndiumElectrochemical and Solid-State Letters
researchProduct

Optical Optimization of the TiO2 Mesoporous Layer in Perovskite Solar Cells by the Addition of SiO2 Nanoparticles

2018

In this work, SiO2 nanoparticles (NPs) were integrated into the mesoporous TiO2 layer of a perovskite solar cell to investigate their effect on cell performance. Different concentrations of SiO2/ethanol have been combined in TiO2/ethanol to prepare pastes for the fabrication of the mesoporous layer with which perovskite solar cells have been fabricated. Addition of SiO2 NPs of 50 and 100 nm sizes produces an enhancement of cell performance mainly because of an improvement of the photocurrent. This increment is in good agreement with the theoretical predictions based on light scattering induced by dielectric SiO2 NPs. The samples using modified scaffolds with NPs also present a significant l…

FabricationMaterials scienceGeneral Chemical EngineeringPerovskite solar cellNanoparticle02 engineering and technologyDielectric010402 general chemistry7. Clean energy01 natural sciencesmesoporous layerlcsh:ChemistryperovskitePerovskite (structure)Photocurrenttechnology industry and agricultureGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringlcsh:QD1-999solar cellsnanoparticles0210 nano-technologyMesoporous materialLayer (electronics)ACS Omega
researchProduct

Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-hetero…

2009

Free-standing nanorod arrays of a thermally cross-linked semiconducting triphenylamine were fabricated on conductive ITO/glass substrates via an anodic aluminum oxide (AAO) template-assisted approach. By using a solution wetting method combined with a subsequent thermal imprinting step to fill the nanoporous structure of the template with a cross-linkable triphenylamine derivative, a polymeric replication of the AAO was obtained after thermal curing and selective removal of the template. To obtain well-aligned and free-standing nanorod arrays, aggregation and collapse of the nanorods were prevented by optimizing their aspect ratio and applying a freeze-drying technique to remove the aqueous…

FabricationMaterials scienceOrganic solar cellNanoporousbusiness.industryGeneral EngineeringGeneral Physics and AstronomyNanotechnologyTriphenylaminePolymer solar cellchemistry.chemical_compoundchemistryOptoelectronicsGeneral Materials ScienceNanorodWettingbusinessCuring (chemistry)ACS nano
researchProduct

Advances in Perovskite Solar Cells.

2015

Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures…

FabricationMaterials scienceapplicationsGeneral Chemical EngineeringGeneral Physics and AstronomyMedicine (miscellaneous)ReviewsNanotechnology02 engineering and technologyReview010402 general chemistry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)perovskite solar cellsdevice structuresGeneral Materials ScienceHigh absorptionPerovskite (structure)business.industryPhotovoltaic systemEnergy conversion efficiencyGeneral Engineering021001 nanoscience & nanotechnology0104 chemical sciencesAbsorption edgeOptoelectronicsCharge carrier0210 nano-technologybusinessAdvanced science (Weinheim, Baden-Wurttemberg, Germany)
researchProduct

Incorporation of a tricationic subphthalocyanine in an organic photovoltaic device

2013

A new tricationic subphthalocyanine was synthesized and employed as light-harvesting and donor material in an ionic solid state organic photovoltaic cell. The incorporation of ionic dyes in organic photovoltaics aims to take advantage of ionic movement in order to enhance the charge transport properties of these materials. In this preliminary study, we report the results obtained in the fabrication of a partially solution-processed device with a cationic dye, where an effiency of 0.5% was reached.

FabricationOrganic solar cellChemical engineeringChemistryPhotovoltaic systemCationic polymerizationSolid-stateIonic bondingOrganic chemistryGeneral Chemistry
researchProduct

How does graphene enhance the photoelectric conversion efficiency of dye sensitized solar cells? An insight from a theoretical perspective

2019

The main goal of this work is to clearly answer the question from a theoretical perspective: how does graphene enhance the photoelectric conversion efficiency in the semiconducting layer of a dye sensitized solar cell? Several arrangements of the graphene layer between the dye molecule and the TiO2 (101) surface are carefully studied and discussed. The dynamic interfacial electron propagations are simulated with consideration of the underlying nuclear motion effect. Theoretical investigation shows that graphene can speed up the electron injection from the dye molecules to the semiconductor layer, only when the graphene sheet is bonded to the TiO2 surface via C–Ti bonds. The excited electron…

Free electron modelMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryGraphene02 engineering and technologyGeneral ChemistryElectronElectron hole021001 nanoscience & nanotechnologylaw.inventionDye-sensitized solar cellSemiconductorlawOptoelectronicsGeneral Materials Science0210 nano-technologybusinessLayer (electronics)Quantum tunnellingJournal of Materials Chemistry A
researchProduct

Efficient microwave-mediated synthesis of fullerene acceptors for organic photovoltaics

2014

Two different processes, namely the Bamford–Stevens and [4 + 2] Diels Alder reactions, have been optimized under microwave irradiation for the functionalization of fullerenes. In this manner, all the main C60- and C70-based acceptor derivatives for organic solar cells such as PCBM, DPM, BHN and ICBA, have been prepared in higher yields and shorter reaction times with respect to the reported data. These findings represent a step forward toward the wide production of cheaper organic solar cells as a consequence of the cost abatement of the acceptors given by higher yields, lower waste production, and reduced reaction time which means a strong energy saving.

FullereneMaterials scienceOrganic solar cellGeneral Chemical EngineeringGeneral ChemistrySettore CHIM/06 - Chimica OrganicaPhotochemistryAcceptormicrowave chemistryorganic chemistryMicrowave chemistryFullereneWaste productionDiels alderSurface modificationOrganic photovoltaicMicrowave
researchProduct

Quaternary ammonium polyiodides as ionic liquid/soft solid electrolytes in dye-sensitized solar cells

2007

Abstract Four new quaternary ammonium iodides, (Me 2 Pe 2 N)I, (Me 2 Hex 2 N)I, (Et 2 Pe 2 N)I and (Et 2 Hex 2 N)I, were synthesized and studied as electrolytes in dye-sensitized solar cells. All compounds were solids at room temperature. Influence of varying amounts of elemental iodine and the effect of tert -butylpyridine (TBP) on the performance of the cell was also studied. Addition of iodine lowered the melting points of the resulting polyiodides. From the ammonium iodides only (Me 2 Hex 2 N)I:I 2 (10:1) was liquid at the room temperature and the others were soft solids. Under illumination from a halogen lamp source at 10 mW cm −2 intensity, the highest power conversion efficiency of 2…

General Chemical EngineeringInorganic chemistryGeneral Physics and Astronomychemistry.chemical_elementGeneral ChemistryElectrolyteIodinechemistry.chemical_compoundPolyiodideDye-sensitized solar cellchemistryIonic liquidMelting pointFast ion conductorAmmoniumJournal of Photochemistry and Photobiology A: Chemistry
researchProduct

Erratum to: Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications

2022

General Materials ScienceElectrical and Electronic EngineeringCondensed Matter PhysicsMolybdenum oxide density of states polaron theory silicon heterojunction solar cellSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and Optics
researchProduct

SBSKIN SOLAR GB: DURABILITÀ DI UN VETROMATTONE INTEGRATO CON CELLE SOLARI DI TERZA GENERAZIONE - SBSKIN SOLAR GB: THE DURABILITY OF 3RD GENERATION SO…

2016

Il vetromattone è un prodotto da costruzione che ha trovato molteplici applicazioni nel campo della progettazione edilizia per la realizzazione di involucri traslucidi. La necessità di adeguare il prodotto alle sempre più stringenti normative in materia di risparmio energetico e sostenibilità ambientale ha portato alla definizione di configurazioni innovative, tramite integrazione di sub-componenti in grado di migliorarne le prestazioni energetiche: una “cintura termica” e celle solari di terza generazione. Queste innovazioni tecniche, brevettate ed in fase di prototipazione da parte della SBskin. Smart Building Skin s.r.l., spin off accademico dell’Università di Palermo, necessitano di ade…

Glass block Dye-sensitized Solar Cell DurabilitySettore ICAR/10 - Architettura TecnicaSettore ICAR/11 - Produzione EdiliziaDurabilità vetromattone Dye-sensitized Solar Cell affidabilità inerente e critica
researchProduct