Search results for " Stars: neutron"

showing 10 items of 50 documents

Spectral analysis of the low-mass X-ray pulsar 4U 1822-371: Reflection component in a high-inclination system

2021

Context. The X-ray source 4U 1822-371 is an eclipsing low-mass X-ray binary and X-ray pulsar, hosting a NS that shows periodic pulsations in the X-ray band with a period of 0.59 s. The inclination angle of the system is so high (80–85°) that in principle, it should be hard to observe both the direct thermal emission of the central object and the reflection component of the spectrum because they are hidden by the outer edge of the accretion disc. Despite the number of studies carried out on this source, many aspects such as the geometry of the system, its luminosity, and its spectral features are still debated. Aims. Assuming that the source accretes at the Eddington limit, the analysis perf…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)FOS: Physical sciencesAstronomy and AstrophysicsRadiusAstrophysics01 natural sciencesaccretion accretion disks stars: neutron stars: individual: 4U 1822-371 X-rays: binaries X-rays: general eclipsesLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary Science0103 physical sciencesEddington luminosityReflection (physics)symbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsX-ray pulsarEclipse
researchProduct

Spin down during quiescence of the fastest known accretion-powered pulsar

2010

We present a timing solution for the 598.89 Hz accreting millisecond pulsar, IGR J00291+5934, using Rossi X-ray Timing Explorer data taken during the two outbursts exhibited by the source on 2008 August and September. We estimate the neutron star spin frequency and we refine the system orbital solution. To achieve the highest possible accuracy in the measurement of the spin frequency variation experienced by the source in-between the 2008 August outburst and the last outburst exhibited in 2004, we re-analysed the latter considering the whole data set available. We find that the source spins down during quiescence at an average rate of ��dot_{sd}=(-4.1 +/- 1.2)E-15 Hz/s. We discuss possible …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)Gravitational waveAstrophysics::High Energy Astrophysical Phenomenagravitational waves stars: neutron stars: rotation pulsars: individual:IGR J00291+5934 X-rays: binariesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMagnetic fieldNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceMillisecond pulsarQuadrupoleneutron stars: rotation pulsars: individual:IGR J00291+5934 X-rays: binaries [gravitational waves stars]Astrophysics - High Energy Astrophysical PhenomenaSpin-½
researchProduct

QPO emission from moving hot spots on the surface of neutron stars: a model

2009

We present recent results of 3D magnetohydrodynamic simulations of neutron stars with small misalignment angles, as regards the features in lightcurves produced by regular movements of the hot spots during accretion onto the star. In particular, we show that the variation of position of the hot spot created by the infalling matter, as observed in 3D simulations, can produce high frequency Quasi Periodic Oscillations with frequencies associated with the inner zone of the disk. Previously reported simulations showed that the usual assumption of a fixed hot spot near the polar region is valid only for misalignment angles relatively large. Otherwise, two phenomena challenge the assumption: one …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodEquatorFOS: Physical sciencesAstronomy and Astrophysicsaccretion accretion discs instabilities MHD stars: magnetic fields stars: neutron stars: oscillationsAstrophysics01 natural sciencesAccretion (astrophysics)Neutron starAccretion rateSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesPolarAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic driveAstrophysics::Earth and Planetary AstrophysicsQuasi periodic010306 general physicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705−44: looking at the inner accretion disc with X-ray spectroscopy

2009

Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kalpha transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper we present a recent XMM observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; th…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLine-of-sightAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusCompact starline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-ray: binaries X-rays: generalNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radiusAstrophysics::Galaxy AstrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

Testing reflection features in 4U 1705-44 with XMM-Newton, BeppoSAX, and RXTE in the hard and soft states

2012

We use data of the bright atoll source 4U 1705-44 taken with XMM-Newton, BeppoSAX and RXTE both in the hard and in the soft state to perform a self-consistent study of the reflection component in this source. Although the data from these X-ray observatories are not simultaneous, the spectral decomposition is shown to be consistent among the different observations, when the source flux is similar. We therefore select observations performed at similar flux levels in the hard and soft state in order to study the spectral shape in these two states in a broad band (0.1-200 keV) energy range, with good energy resolution, and using self-consistent reflection models. These reflection models provide…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSpectral shape analysis010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaResolution (electron density)FOS: Physical sciencesFluxAstronomy and AstrophysicsAstrophysicsRadius01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaSoft stateSpace and Planetary Science0103 physical sciencesformation line: identification stars: neutron stars: individual: 4U 1705-44 X-rays: binaries X-rays: general [line]Reflection (physics)Thick diskline: formation line: identification stars: neutron stars: individual: 4U 1705-44 X-rays: binaries X-rays: generalAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsEnergy (signal processing)
researchProduct

X-ray spectroscopy of MXB 1728-34 with XMM-Newton

2011

We have analysed an XMM-Newton observation of the low mass X-ray binary and atoll source MXB 1728-34. The source was in a low luminosity state during the XMM-Newton observation, corresponding to a bolometric X-ray luminosity of 5*10E36 d^2 erg/s, where d is the distance in units of 5.1 kpc. The 1-11 keV X-ray spectrum of the source, obtained combining data from all the five instruments on-board XMM-Newton, is well fitted by a Comptonized continuum. Evident residuals are present at 6-7 keV which are ascribed to the presence of a broad iron emission line. This feature can be equally well fitted by a relativistically smeared line or by a self-consistent, relativistically smeared, reflection mo…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray spectroscopy010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaBolometerFOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsformation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general [line]01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicaAccretion discSpace and Planetary Sciencelaw0103 physical sciencesEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsline: formation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general
researchProduct

Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

2014

When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different co…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsaccretion accretion discs line: identification stars: neutron X-rays: binaries X-rays: galaxies X-rays: individual: (GX 13+1)Spectral shape analysisAccretion (meteorology)Absorption spectroscopyAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesSpectral lineNeutron starAmplitudeidentification stars: neutron X-rays: binaries X-rays: galaxies X-rays: individual: (GX 13+1) [accretion accretion discs line]Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Emission spectrumAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

2015

Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disk around a compact object. In this paper we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disk. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these feat…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomyAstronomy and AstrophysicsSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Scienceformation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: general [line]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHumanitiesAstrophysics::Galaxy Astrophysics
researchProduct

Searching for pulsed emission from XTE J0929-314 at high radio frequencies

2009

The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-31…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicspulsars: general methods: data analysis methods: observational X-rays: binaries stars: neutronMillisecondAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLuminosityInterstellar mediumNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceMillisecond pulsarAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsX-ray pulsar
researchProduct

The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480-2446, during its 2010 outburst

2012

(abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the sec…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical Phenomenaneutron pulsars: individual: IGR J17480-2446 X-rays: binaries [accretion accretion discs stars]FOS: Physical sciencesAstrophysics::Solar and Stellar Astrophysicsaccretion accretion discs stars: neutron pulsars: individual: IGR J17480-2446 X-rays: binariesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct