Search results for " Stiffness"
showing 10 items of 299 documents
Cardiovascular Responses to Muscle Stretching: A Systematic Review and Meta-analysis
2021
AbstractThe aim of this study will be to review the current body of literature to understand the effects of stretching on the responses of the cardiovascular system. A literature search was performed using the following databases: Scopus, NLM Pubmed and ScienceDirect. Studies regarding the effects of stretching on responses of the cardiovascular system were investigated. Outcomes regarded heart rate(HR), blood pressure, pulse wave velocity (PWV of which baPWV for brachial-ankle and cfPWV for carotid-femoral waveforms), heart rate variability and endothelial vascular function. Subsequently, the effects of each outcome were quantitatively synthetized using meta-analytic synthesis with random-…
In Vitro Measurement of Strain Localization Preceding Dissection of the Aortic Wall Subjected to Radial Tension
2020
AbstractBackgroundAortic dissection (AD) is a common pathology and challenging clinical problem. A better understanding of the biomechanical effects preceding its initiation is essential for predicting adverse events on a patient-specific basis. Moreover, the predictability of patient-specific biomechanics-based computational models is hampered by uncertainty about boundary conditions and material properties.ObjectivePredisposition of thoracic aortic aneurysms (TAA) to ADs can be related to the degradation of biomechanically important constituents in the aortic wall of TAAs. The goal of the present study is to develop a new methodology to measure strain fields in aortic tissues subjected to…
Analysis of different geometrical features to achieve close-to-bone stiffness material properties in medical device: A feasibility numerical study
2021
Background and objective: In orthopedic medical devices, elasto-plastic behavior differences between bone and metallic materials could lead to mechanical issues at the bone-implant interface, as stress shielding. Those issue are mainly related to knee and hip arthroplasty, and they could be responsible for implant failure. To reduce mismatching-related adverse events between bone and prosthesis mechanical properties, modifying the implant's internal geometry varying the bulk stiffness and density could be the right approach. Therefore, this feasibility study aims to assess which in-body gap geometry improves, by reducing, the bulk stiffness. Methods: Using five finite element models, a unia…
Effect of Oral Semaglutide on Cardiovascular Parameters and Their Mechanisms in Patients with Type 2 Diabetes: Rationale and Design of the Semaglutid…
2022
Type 2 diabetes (T2D) management has reached a point where not only optimal glycaemic control is necessary, but also additional interventions with proven cardiovascular risk reduction benefit. Subcutaneous semaglutide has been shown to provide cardiovascular protection, but its use may be limited by its injection formulation. To overcome this limitation, an oral semaglutide tablet has been developed, which could potentially be of the same value as its injection counterpart, but in a much wider group of patients with T2D, thereby allowing for broader cardiovascular risk reduction in this vulnerable patient population.A total of 100 consecutive patients with T2D and a disease duration of up t…
Identification of a static tool force model for robotic face milling
2014
In this paper two different process models which can predict the mean value components of the tool forces when milling aluminium, bronze and steel with an industrial robot have been estimated. The parameters in the process models were depth and width of cut, while feedrate and cutting speed were found from the tool manufacturer's datasheets. The models were estimated from a large set of machining experiments. Different measurement sets were used for parameter estimation and for model verification. The estimated models were found to be accurate. For the experiments in aluminium and the model using only the depth of cut as parameter, the average error was about 18N. For the model using both d…
Off-line path correction of robotic face milling using static tool force and robot stiffness
2015
In this paper the developed method for off-line compensation of tool deflections when milling aluminum with an industrial robot is presented. The efficiency of this approach is verified with high precision measurements of deflections using a laser tracker. The compensation method includes both the static milling process model which can predict the mean value components of the tool forces and a new combined local/global approach for estimating the combined stiffnesses of joints. With a process model such as the one presented in this paper and estimates of the robot's joint stiffness values, the tool path can be adjusted to counteract deflections of the tool during milling operations. The mod…
On the dynamic behavior of piezoelectric active repair by the boundary element method
2011
The dynamic behavior of piezoelectric active repair bonded on cracked structures is analyzed in this article. The boundary element code used to perform the simulations is implemented in the framework of piezoelectricity in order to model the coupling between the elastic and the electric fields, which represents the most important feature of piezoelectric media. The fracture mechanics problem, i.e. the crack, as well as the bonding layer between the host structure and the active patch is modeled by means of the multidomain technique provided with an interface spring model. More particularly, the spring interface model allows considering the bonding layer as a zero-thickness elastic ply char…
Compensation of compliance errors in parallel manipulators composed of non-perfect kinematic chains
2012
The paper is devoted to the compliance errors compensation for parallel manipulators under external loading. Proposed approach is based on the non-linear stiffness modeling and reduces to a proper adjusting of a target trajectory. In contrast to previous works, in addition to compliance errors caused by machining forces, the problem of assembling errors caused by inaccuracy in the kinematic chains is considered. The advantages and practical significance of the proposed approach are illustrated by examples that deal with groove milling with Orthoglide manipulator.
Compliance error compensation technique for parallel robots composed of non-perfect serial chains
2012
The paper presents the compliance errors compensation technique for over-constrained parallel manipulators under external and internal loadings. This technique is based on the non-linear stiffness modeling which is able to take into account the influence of non-perfect geometry of serial chains caused by manufacturing errors. Within the developed technique, the deviation compensation reduces to an adjustment of a target trajectory that is modified in the off-line mode. The advantages and practical significance of the proposed technique are illustrated by an example that deals with groove milling by the Orthoglide manipulator that considers different locations of the workpiece. It is also de…