Search results for " Symbol"

showing 10 items of 217 documents

MultivariateApart: Generalized partial fractions

2021

We present a package to perform partial fraction decompositions of multivariate rational functions. The algorithm allows to systematically avoid spurious denominator factors and is capable of producing unique results also when being applied to terms of a sum separately. The package is designed to work in Mathematica, but also provides interfaces to the Form and Singular computer algebra systems.

Computer Science - Symbolic ComputationHigh Energy Physics - TheoryFOS: Computer and information sciencesPolynomialComputer scienceFOS: Physical sciencesGeneral Physics and AstronomyRational functionSymbolic Computation (cs.SC)Partial fraction decomposition01 natural sciencesGröbner basisHigh Energy Physics - Phenomenology (hep-ph)ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION0103 physical sciences010306 general physicsSpurious relationshipcomputer.programming_language010308 nuclear & particles physicsFunction (mathematics)Symbolic computationAlgebraHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Hardware and ArchitectureComputer Science::Mathematical SoftwareWolfram LanguagecomputerComputer Physics Communications
researchProduct

Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language

2002

AbstractThe traditional split into a low level language and a high level language in the design of computer algebra systems may become obsolete with the advent of more versatile computer languages. We describe GiNaC, a special-purpose system that deliberately denies the need for such a distinction. It is entirely written in C++and the user can interact with it directly in that language. It was designed to provide efficient handling of multivariate polynomials, algebras and special functions that are needed for loop calculations in theoretical quantum field theory. It also bears some potential to become a more general purpose symbolic package.

Computer Science - Symbolic ComputationI.1.3FOS: Computer and information sciencesFor loopTheoretical computer scienceAlgebra and Number TheoryFOS: Physical sciencesI.1.1; I.1.3Symbolic Computation (cs.SC)Computational Physics (physics.comp-ph)Symbolic computationI.1.1High Energy Physics - PhenomenologyComputational MathematicsHigh Energy Physics - Phenomenology (hep-ph)General purposeHigh-level programming languageSpecial functionsFourth-generation programming languagePhysics - Computational PhysicsC programming languageLow-level programming languageMathematicsJournal of Symbolic Computation
researchProduct

Block 21 and the Pensabilità of the Representation of Auschwitz

2012

Abstract Building on the assumption that the Memorial in Honor of Italians Fallen in Nazi Extermination Camps (situated in Auschwitz I, Block 21) expresses the meta-reflexive inclination that strengthened the twentieth century (the capacity of that century to think of itself as a subject), this article aims to highlight and illustrate the dual philosophical significance of the Memorial. From the perspective of the philosophy of history, this philosophical significance, which has a symbolic value, leads us to investigate an organic and historically embodied conception of deportation. From the perspective of the aesthetics of memory, this philosophical meaning offers a new framework for the …

Cultural StudiesCognitive scienceHistoryRAPPRESENTAZIONEAUSCHWITZVisual Arts and Performing ArtsPhilosophy of historymedia_common.quotation_subjectReligious studiesSubject (philosophy)Representation (arts)ArtMeaning (philosophy of language)DeportationExpression (architecture)AestheticsHonorPensare dopo AuschwitzSettore M-FIL/01 - Filosofia TeoreticaThe SymbolicRappresentazione estetica memoria Auschwitzmedia_commonImages
researchProduct

The minimal free resolution of fat almost complete intersections in ℙ1 x ℙ1

2017

AbstractA current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case where I = IX is an ideal deûning an almost complete intersection (ACI) set of points X in ℙ1 × ℙ1. In particular, we describe a minimal free bigraded resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set 𝒵 of fat points whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of triple points. We call 𝒵 a fat ACI.We also show that its symbolic and ordinary powers are equal, i.e, .

Current (mathematics)Ideal (set theory)General MathematicsPoints in ℙ1× ℙ1010102 general mathematicsComplete intersectionArithmetically Cohen-Macaulay; Points in ℙ1× ℙ1; Resolution; Symbolic powersSymbolic powers01 natural sciencesArithmetically Cohen-MacaulayCombinatoricsSet (abstract data type)Settore MAT/02 - AlgebraHomogeneous0103 physical sciencesArithmetically Cohen-Macaulay Points in ℙ1xℙ1 Resolution Symbolic powersSettore MAT/03 - Geometria010307 mathematical physics0101 mathematicsResolutionFocus (optics)Resolution (algebra)Mathematics
researchProduct

Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data

2018

We prove boundedness and continuity for solutions to the Dirichlet problem for the equation $$ - {\rm{div}}(a(x,\nabla u)) = h(x,u) + \mu ,\;\;\;\;\;{\rm{in}}\;{\rm{\Omega }} \subset \mathbb{R}^{N},$$ where the left-hand side is a Leray-Lions operator from $$- {W}^{1,p}_0(\Omega)$$ into W−1,p′(Ω) with 1 < p < N, h(x,s) is a Caratheodory function which grows like ∣s∣p−1 and μ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Holder-continuous far from the support of μ.

Dirichlet problemElliptic partial differential equations; boundary-value problems; regularity; Hölder-continuityregularityOperator (physics)boundary-value problemsElliptic partial differential equationsHölder-continuityMeasure (mathematics)OmegaCombinatoricsBounded functionRadon measurep-LaplacianNabla symbolMathematics
researchProduct

Elliptic equations having a singular quadratic gradient term and a changing sign datum

2012

In this paper we study a singular elliptic problem whose model is \begin{eqnarray*} - \Delta u= \frac{|\nabla u|^2}{|u|^\theta}+f(x), in \Omega\\ u = 0, on \partial \Omega; \end{eqnarray*} where $\theta\in (0,1)$ and $f \in L^m (\Omega)$, with $m\geq \frac{N}{2}$. We do not assume any sign condition on the lower order term, nor assume the datum $f$ has a constant sign. We carefully define the meaning of solution to this problem giving sense to the gradient term where $u=0$, and prove the existence of such a solution. We also discuss related questions as the existence of solutions when the datum $f$ is less regular or the boundedness of the solutions when the datum $f \in L^m (\Omega)$ with …

Dirichlet problemPure mathematicsApplied MathematicsMathematical analysissingularity at zeroMathematics::Analysis of PDEsGeodetic datumTerm (logic)Omegadata with non-constant signdata with non-constant sign; dirichlet problem; singularity at zero; gradient termQuadratic equationgradient termNabla symboldirichlet problemConstant (mathematics)AnalysisMathematicsSign (mathematics)Communications on Pure and Applied Analysis
researchProduct

Nonlinear diffusion in transparent media: the resolvent equation

2017

Abstract We consider the partial differential equation u - f = div ⁡ ( u m ⁢ ∇ ⁡ u | ∇ ⁡ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.

Dirichlet problemPure mathematicsTotal variation; transparent media; linear growth Lagrangian; comparison principle; Dirichlet problems; Neumann problems35J25 35J60 35B51 35B99Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsBoundary (topology)01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsBounded functionBounded variationFOS: MathematicsNeumann boundary conditionUniquenessNabla symbol0101 mathematicsAnalysisAnalysis of PDEs (math.AP)ResolventMathematics
researchProduct

Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics

2007

The original publication is available at www.springerlink.com ; ISBN 978-3-540-75519-7 ; ISSN 0302-9743 (Print) 1611-3349 (Online); International audience; We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, \ie surfaces of algebraic degree~2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is {\em complete} in the sense that it can handle all kinds of…

Discrete mathematicsDegree (graph theory)ComputationDegenerate energy levelsACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms020207 software engineering010103 numerical & computational mathematics02 engineering and technology[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]01 natural sciencesACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.3: EfficiencyCombinatoricsIntersection0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Adjacency listGravitational singularity0101 mathematicsAlgebraic numberACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.0: Algorithm design and analysisMathematics
researchProduct

A weak comparison principle for solutions of very degenerate elliptic equations

2012

We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u\in K\), where \(K\subset \mathbb{R }^N\) is a Borel set containing the origin.

Discrete mathematicsPure mathematicsApplied MathematicsDegenerate energy levelsWeak comparison principleMathematics::Analysis of PDEs35B51 35J70 35D30 49K20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicavery degenerate elliptic equationsFOS: MathematicsPoint (geometry)Nabla symbolBorel setDivergence (statistics)Analysis of PDEs (math.AP)MathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Construction of chaotic dynamical system

2010

The first‐order difference equation xn+ 1 = f(xn ), n = 0,1,…, where f: R → R, is referred as an one‐dimensional discrete dynamical system. If function f is a chaotic mapping, then we talk about chaotic dynamical system. Models with chaotic mappings are not predictable in long‐term. In this paper we consider family of chaotic mappings in symbol space S 2. We use the idea of topological semi‐conjugacy and so we can construct a family of mappings in the unit segment such that it is chaotic. First published online: 09 Jun 2011

Discrete mathematicsPure mathematicsincreasing mappingDifferential equationChaoticinfinite symbol spaceBinary numberFunction (mathematics)Space (mathematics)Nonlinear Sciences::Chaotic Dynamicstopological semi‐conjugacyModeling and SimulationQA1-939Orbit (dynamics)chaotic mappingbinary expansionUnit (ring theory)MathematicsAnalysisMathematicsCoupled map latticeMathematical Modelling and Analysis
researchProduct