Search results for " Telescopes"

showing 10 items of 59 documents

AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

2011

The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around - 145 dB re 1 V/mu Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six "acoustic clusters", each comprising six acoustic sensors that are arranged at distanc…

Optical telescopesNuclear and High Energy PhysicsAcoustic devicesNeutrino detectionPreamplifierAmbient noise levelFOS: Physical sciencesLINENeutrino telescope01 natural sciencesOptical telescopeThermo-acoustic modelData acquisition0103 physical sciencesSHOWERSWATERPARTICLE-DETECTION14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationRemote sensingPhysicsANTARES010308 nuclear & particles physicsSensorsDetectorAstronomyElementary particlesAcoustic waveAMADEUSAcoustic neutrino detectionAcoustic wavesNeutrino detectorAcoustic variables measurementthermo-acoustic model; amadeus; neutrino telescope; acoustic neutrino detection; antaresFISICA APLICADAFísica nuclearNeutrinoNeutrino telescopesComputer hardware description languagesAstrophysics - Instrumentation and Methods for AstrophysicsSignal detection
researchProduct

Calibration of the RPC charge readout in the ARGO-YBJ experiment

2012

""The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10^4\\\/m^2, enabling the study of the primary cosmic rays with energies in the ''knee'' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle de…

Optical telescopesNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCamere a Piastre Resistive (RPC)Resistive plate chamberAstrophysics::High Energy Astrophysical PhenomenaCosmic raylaw.inventionTelescopeSettore FIS/05 - Astronomia E AstrofisicaOpticslawCoincidentAir showersCalibrationSea levelInstrumentationParticle densitiesCosmic raysResistive Plate Chambers Charge read-out Extended Air ShowersPhysicsAir showers Charge readout Dynamic range Knee regions Particle densities Resistive plate chambers; Calibration Charged particles Cosmic rays Experiments Optical telescopes Sea level Telescopes; Particle spectrometersResistive touchscreenScintillationDynamic rangeCharge readoutParticle spectrometersbusiness.industryCharged particlesSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsCharged particleAir showerCalibrazione della Risposta Analogica di RPCKnee regionsLettura Analogica di RPCCalibrationResistive plate chambersbusinessExperimentsTelescopes
researchProduct

Time calibration of the ANTARES neutrino telescope

2011

The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of ~1 ns. The methods developed to attain this level of precision are described.

Optical telescopesPhysics - Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and Detectors01 natural sciencesOptimal performanceHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Calibration procedureDimensional arraysAngular resolution[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino energyNEUTRINO TELESCOPE010303 astronomy & astrophysicsPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)Deep seaNeutrino detectorRelative timeCalibrationFísica nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsTime calibrationPhotomultiplier[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov lightAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesScattering lengthNeutrino TelescopesOptical telescopeNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Tellurium compounds0103 physical sciencesOptical systemsCalibrationAngular resolution14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORCherenkov radiationtime calibration; neutrino telescopes; antaresANTARES010308 nuclear & particles physicsNeutrino interactionsAstronomyElementary particlesAstronomy and AstrophysicsPhotomultipliersFISICA APLICADAHigh Energy Physics::ExperimentUNDERWATER DETECTORNeutrino telescopesSYSTEM
researchProduct

ANTARES: The first undersea neutrino telescope

2011

The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given. © 2011 Elsevier B.V. All rights reserved.

Optical telescopesPhysics::Instrumentation and DetectorsAstronomyMarine engineeringSubmarine cablesAstrophysics01 natural scienceslaw.inventionAstroparticlelaw010303 astronomy & astrophysicsInstrumentationPhysicsDense wavelength division multiplexingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsSubmarine cableDeep seaNeutrino astronomyFísica nuclearNeutrinoMarine technologyAstrophysics - Instrumentation and Methods for AstrophysicsNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Wet mateable connectorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLINEOptical telescopePhysics::GeophysicsTelescopePhotomultiplier tube0103 physical sciencesNeutrinoDWDM14. Life underwaterDeep sea detectorInstrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORAstroparticle physics010308 nuclear & particles physicswet mateable connector.Marine technologyAstronomyElementary particles[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]PhotomultipliersKM3NeTFISICA APLICADAEarth (planet)High Energy Physics::ExperimentNeutrino astronomyastroparticle; neutrino astronomy; marine technology; dwdm; photomultiplier tube; deep sea detector; submarine cable; wet mateable connector; neutrinoSYSTEMTelescopes
researchProduct

The ANTARES telescope neutrino alert system

2012

The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

Optical telescopesPhysics::Instrumentation and DetectorsAstrophysics7. Clean energy01 natural sciencesGamma ray burstsFOLLOW-UP OBSERVATIONSlaw.inventionlawFlaring activeVery high energiesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGAMMA-RAY BURSTS[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsSupernovaNeutrino detectorNeutrino astronomyFísica nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesOptical telescopeTelescopeMuon tracksCoincidentSEARCHDetection methods0103 physical sciencesCore collapse supernovae010306 general physicsOptical follow-upInstrumentation and Methods for Astrophysics (astro-ph.IM)Neutronsantares; neutrino astronomy; optical follow-up; transient sourcesANTARES010308 nuclear & particles physicsGamma raysAstronomyAstronomy and AstrophysicsAlert systemsStarsTransient sources[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Optical signalsPotential sources13. Climate actionFISICA APLICADAHigh Energy Physics::ExperimentNeutrino astronomyGamma-ray burst
researchProduct

Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

2010

A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

PhotomultiplierPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAtmospheric muonsFOS: Physical sciencesLINECosmic rayPotassium-4001 natural sciencesParticle detectorNuclear physicsPOTASSIUM-40NEUTRINO TELESCOPESatmospheric muons; depth intensity relation; potassium-400103 physical sciencesDepth intensity relation14. Life underwater010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPotassium-40DetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsPERFORMANCEDEPTH INTENSITY RELATIONLIGHTNeutrino detector13. Climate actionddc:540Física nuclearHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SYSTEMLepton
researchProduct

Acoustic transmitters for underwater neutrino telescopes.

2012

In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing recei…

Physics - Instrumentation and DetectorsPositioning systemparametric sourcesFOS: Physical sciencesUnderwater neutrino telescopesacoustic transceiver; sensor array; underwater neutrino telescopes; calibration; positioning systems; parametric sourcessensor arraylcsh:Chemical technology01 natural sciencesBiochemistrySignalArticleAnalytical ChemistryPositioning systemsSensor array0103 physical sciencesAcoustic transceiverElectronic engineeringlcsh:TP1-118514. Life underwaterElectrical and Electronic EngineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)010301 acousticsInstrumentationSensor arrayPhysics010308 nuclear & particles physicsTransmitterParametric sourcespositioning systemsInstrumentation and Detectors (physics.ins-det)calibrationAtomic and Molecular Physics and OpticsNoiseacoustic transceiverNeutrino detectorFISICA APLICADACalibrationNeutrinoAstrophysics - Instrumentation and Methods for Astrophysicsunderwater neutrino telescopesUnderwater acoustic communicationSensors (Basel, Switzerland)
researchProduct

Search for Neutrino-Induced Cascades with AMANDA

2004

We report on a search for electro-magnetic and/or hadronic showers (cascades) induced by high energy neutrinos in the data collected with the AMANDA II detector during the year 2000. The observed event rates are consistent with the expectations for atmospheric neutrinos and muons. We place upper limits on a diffuse flux of extraterrestrial electron, tau and muon neutrinos. A flux of neutrinos with a spectrum $\Phi \propto E^{-2}$ which consists of an equal mix of all flavors, is limited to $E^2 \Phi(E)=8.6 x 10^{-7} GeV/(cm^{2} s sr)$ at a 90% confidence level for a neutrino energy range 50 TeV to 5 PeV. We present bounds for specific extraterrestrial neutrino flux predictions. Several of t…

PhysicsAMANDAParticle physicsMuonPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaHadronHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)FluxFOS: Physical sciencesAstronomy and AstrophysicsElectronAstrophysicsNeutrino astronomyAMANDA; Neutrino astronomy; Neutrino telescopesHigh Energy Physics::ExperimentNeutrino telescopesNeutrino astronomyNeutrinoEvent (particle physics)
researchProduct

Magnetic shielding of soft protons in future X-ray telescopes: the case of the ATHENA Wide Field Imager

2018

Both the interplanetary space and the Earth magnetosphere are populated by low energy ($\leq300$ keV) protons that are potentially able to scatter on the reflecting surface of Wolter-I optics of X-ray focusing telescopes and reach the focal plane. This phenomenon, depending on the X-ray instrumentation, can dramatically increase the background level, reducing the sensitivity or, in the most extreme cases, compromising the observation itself. The use of a magnetic diverter, deflecting protons away from the field of view, requires a detailed characterization of their angular and energy distribution when exiting the mirror. We present the first end-to-end Geant4 simulation of proton scattering…

PhysicsField (physics)ProtonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsMagnetosphereFOS: Physical sciencesAstronomy and AstrophysicsX-ray telescopeField of view01 natural sciencesComputational physicsMagnetic field010309 opticsCardinal pointSpace and Planetary Science0103 physical sciencesElectromagnetic shieldinginstrumentation: miscellaneous – telescopesAstrophysics - Instrumentation and Methods for Astrophysics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

Flux limits on ultra high energy neutrinos with AMANDA-B10

2005

Abstract Data taken during 1997 with the AMANDA-B10 detector are searched for a diffuse flux of neutrinos of all flavors with energies above 10 16  eV. At these energies the Earth is opaque to neutrinos, and thus neutrino induced events are concentrated at the horizon. The background are large muon bundles from down-going atmospheric air shower events. No excess events above the background expectation are observed and a neutrino flux following E −2 , with an equal mix of all flavors, is limited to E 2 Φ (10 15  eV  E 18  eV) ⩽ 0.99 × 10 −6  GeV cm −2  s −1  sr −1 at 90% confidence level. This is the most restrictive experimental bound placed by any neutrino detector at these energies. Bound…

PhysicsParticle physicsAMANDAMuonPhysics::Instrumentation and DetectorsUHE neutrinosAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHigh Energy Physics::PhenomenologyFluxAstronomy and AstrophysicsSolar neutrino problemAMANDA; Neutrino astronomy; Neutrino telescopes; UHE neutrinosNeutrino detectorNeutrino astronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyNeutrino telescopes
researchProduct