Search results for " WATER"
showing 10 items of 3407 documents
Analysis of psychoactive substances in water by information dependent acquisition on a hybrid quadrupole time-of-flight mass spectrometer.
2016
Emerging drugs of abuse, belonging to many different chemical classes, are attracting users with promises of “legal” highs and easy access via internet. Prevalence of their consumption and abuse through wastewater-based epidemiology can only be realized if a suitable analytical screening procedure exists to detect and quantify them in water. Solid-phase extraction and ultra-high performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UHPLC–QqTOF–MS/MS) was applied for rapid suspect screening as well as for the quantitative determination of 42 illicit drugs and metabolites in water. Using this platform, we were able to identify amphetamines, tryptamines, piperazines, p…
A trajectory-based classification of ERA-Interim ice clouds in the region of the North Atlantic storm track
2016
A two-type classification of ice clouds (cirrus) is introduced, based on the liquid and ice water content, LWC and IWC, along air parcel backward trajectories from the clouds. In situ cirrus has no LWC along the trajectory segment containing IWC; it forms via nucleation from the gas phase. In contrast, liquid-origin cirrus has both LWC and IWC along their backward trajectories; it forms via lifting from the lower troposphere and freezing of mixed-phase clouds. This classification is applied to 12 years of ERA-Interim ice clouds in the North Atlantic region. Between 400 and 500 hPa more than 50% are liquid-origin cirrus, whereas this frequency decreases strongly with altitude (<10% at 200 hP…
The impact of climate change on extreme precipitation in Sicily, Italy
2018
Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short-duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub-hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth-Duration-Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscalin…
Budyko’s Based Method for Annual Runoff Characterization across Different Climatic Areas: an Application to United States
2018
Runoff data knowledge is of fundamental importance for a wide range of hydrological, ecological, and socioeconomic applications. The reconstruction of annual runoff is a fundamental task for several activities related to water resources management, especially for ungauged basins. At catchment scales, the Budyko's framework provides an extremely useful and, in some cases, accurate estimation of the long-term partitioning of precipitation into evapotranspiration and runoff as a function of the prevailing climatic conditions. Recently the same long-term partitioning rules have been successfully used to describe water partitioning also at the annual scale and calculate the annual runoff distrib…
Intercomparison of Soil Moisture Retrieved from GNSS-R and from Passive L-Band Radiometry at the Valencia Anchor Station
2019
In this paper, the SOMOSTA (Soil Moisture Monitoring Station) experiment on the intercomparison of soil moisture monitoring from Global Navigation Satellite System Reflectometry (GNSS-R) signals and passive L-band microwave radiometer observations at the Valencia Anchor Station is introduced. The GNSS-R instrument has an up-looking antenna for receiving direct signals from satellites, and a dual-pol down-looking antenna for receiving LHCP (left-hand circular polarization) and RHCP (right-hand circular polarization) reflected signals from the soil surface. Data were collected from the three different antennas through the two channels of Oceanpal GNSS-R receiver and, in addition, calibration …
Two-year global simulation of L-band brightness temperatures over land
2003
International audience; This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale. The microwave emission of various land-covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) was computed using a simple model [L-band Microwave Emission of the Biosphere (L-MEB)] based on radiative transfer equations. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land-cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving t…
Lidar sounding of volcanic plumes
2013
ABSTRACT Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO 2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO 2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on r…
Modeling the Effects of Climate Change on the Supply of Phosphate-Phosphorus
2009
The transfer of phosphorus from terrestrial to aquatic ecosystems is a key route through which climate can influence aquatic ecosystems. A number of climatic factors interact in complex ways to regulate the transfer of phosphorus and modulate its ecological effects on downstream lakes and reservoirs. Processes influencing both the amount and timing of phosphorus export from terrestrial watersheds must be quantified before we can assess the direct and indirect effects of the weather on the supply and recycling of phosphorus. Simulation of the export of phosphorus from the terrestrial environment is complicated by the fact that it is difficult to describe seasonal and inter-annual variations …
The roles of microlites and phenocrysts during degassing of silicic magma
2022
Abstract Silicic magmas span a wide range of eruptive styles between explosive and effusive, and transitions between these styles are commonplace. Yet the triggers of switches in eruptive style remain poorly understood. Eruptions are mostly driven by degassing of magmatic water and their eruption style - effusive or explosive - is likely governed by the efficiency of outgassing as well as magma ascent rate. Microlites and phenocrysts are often purported to promote heterogeneous bubble nucleation and outgassing, both key variables in the degassing dynamics that become crucial in controlling the eruptive style. Here, in order to shed light on the role of nature, size and abundance of crystals…
Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions
2020
International audience; The macroscopic capillary length, λc, is a fundamental soil parameter expressing the relative importance of the capillary over gravity forces during water movement in unsaturated soil. In this investigation, we propose a simple field method for estimating λc using only a single-ring infiltration experiment of the Beerkan type and measurements of initial and saturated soil water contents. We assumed that the intercept of the linear regression fitted to the steady-state portion of the experimental infiltration curve could be used as a reliable predictor of λc. This hypothesis was validated by assessing the proposed calculation approach using both analytical and field d…