Search results for " X-Rays: General"

showing 2 items of 22 documents

Broadband observations of the X-ray burster 4U1705-44 with Beppo SAX

2016

4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states because it shows clear spectral state transitions. The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of about 100 ks, we study the spectral evol…

X-ray bursterAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsX-rays: general01 natural sciencesSpectral lineAccretion accretion diskStars: individual: 4U 1705-44Settore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBlack-body radiationX-rays: star010303 astronomy & astrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicX-rays: binarieStars: neutronNeutron starSpace and Planetary ScienceReflection (physics)individual: 4U 1705-44; Stars: neutron; X-rays: binaries; X-rays: general; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Spectral analysis of the dipping LMXB system XB 1916-053

2019

Context: XB 1916-053 is a low mass X-ray binary system (LMXB) hosting a neutron star (NS) and showing periodic dips. The spectrum of the persistent emission was modeled with a blackbody component having a temperature between 1.31 and 1.67 keV and with a Comptonization component with an electron temperature of 9.4 keV and a photon index $\Gamma$ between 2.5 and 2.9. The presence of absorption features associated with highly ionized elements suggested the presence of partially ionized plasma in the system. Aims: In this work we performed a study of the spectrum of XB 1916-053, which aims to shed light on the nature of the seed photons that contribute to the Comptonization component. Methods: …

stars: individual: XB 1916-053Absorption spectroscopyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsX-rays: general01 natural sciencesSpectral lineformation identification Line neutron Stars Stars: individual: XB 1916-053 X-rays: binaries X-rays: generalX-rays: binariesstars: neutron0103 physical sciencesBlack-body radiationAbsorption (logic)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureline: formationAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]line: identification
researchProduct