Search results for " XPS"

showing 3 items of 13 documents

Rapid and eco-friendly synthesis of graphene oxide-silica nanohybrids

2014

The increasing interest in Graphene oxide (GO) is due to many issues: the presence of both sp2-conjugated atoms and oxygen-containing functional groups provides a strong hydrophilicity and the possibility to further functionalize it with other molecules (i.e. π-π interactions covalent attachment etc.) [1]. Furthermore since the GO is biocompatible and noncytotoxic many studies have been recently focused on the development of GO-based nanodevices for bioimaging DNA detection drug delivery. Due to their low cytotoxicity and large internal surface area silica nanoparticles have been taken into account as promising material for biolabeling and drug loading/delivery. Particular consideration has recently been demonstrated for GO-silica composites because of the potentialities for electrical applications their chemical inertia and stability toward ions exposure. The possibility to combine the extraordinary properties of GO and silica offers several advantages for the realization of nanoprobes for biological applications and of biosensor [12]. The strategy for the fabrication of GO-nanosilica nanohybrids can be schematized as follows: (i) synthesis of GO by oxidizing graphite powder with the method described by Marcano et al. [3] (ii) Preparation of oxygen-loaded silica nanoparticles by thermal treatments in controlled atmosphere in order to induce high NIR emission at 1272 nm from high purity silica nanoparticles. (iii) preparation of GrO-silica nanohybrid films via rapid solvent casting in water. The nanohybrids were tested by XPS FTIR Raman analysis UV photoluminescence analysis TGA Zeta potential measurements electrical tests AFM and SEM. Several nanohybrids were prepared by combining two different typologies of GO and two different samples of silica.
researchProduct

Structural Characterization of Surfactant-Coated Bimetallic Cobalt/Nickel Nanoclusters by XPS, EXAFS, WAXS, and SAXS

2011

Cobalt nickel bimetallic nanoparticles were synthesized by changing the sequence of the chemical reduction of Co(II) and Ni(II) ions confined in the core of bis(2-ethylhexyl)phosphate (2)., and Ni(DEHP)(2). The reduction was carried out by mixing, sequentially or contemporaneously, fixed amounts of n-heptane solution of Co(DEHP)2 and Ni(DEHP)2 micelles with a solution of sodium borohydride in ethanol at a fixed (reductant)/(total metal) molar ratio. This procedure involves the rapid formation of surfactant-coated nanoparticles, indicated as Co/Ni (Co after Ni), Ni/Co (Ni after Co), and Co + Ni (simultaneous), followed by their slow separation as nanostructures embedded in a sodium bis(2-eth…

inorganic chemicalsendocrine systemMaterials sciencechemistry.chemical_elementNanoparticleNanoclustersMetalSodium borohydridechemistry.chemical_compoundX-ray photoelectron spectroscopyNANOPARTICLESPARTICLESBimetallic Cobalt/Nickel Nanoclusters. XPS. EXAFS. WAXS. SAXS.GOLDPhysical and Theoretical ChemistryBimetallic stripMICELLESSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyNickelGeneral Energychemistryvisual_artNANOPARTICLES; PARTICLES; GOLD; MICELLESvisual_art.visual_art_mediumCobaltNuclear chemistry
researchProduct

Plasma Functionalization of Multiwalled Carbon Nanotubes and Their Use in the Preparation of Nylon 6-Based Nanohybrids

2012

The possibility to obtain carbon nanotubes (CNT)/polyamide 6 composites with excellent mechanical properties in a simple, industrially scalable way is investigated. Commercial CNTs are treated by plasma while changing some key parameters (exposure time, plasma power, type of gas) in order to optimize the process and to achieve a sufficient degree of functionalization. The treated samples are characterized by Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The most interesting samples are selected to be used as reinforcing fillers, in different concentrations, in a polyamide 6 matrix. The mechanical tests show a dramatic increase of both tens…

nanoparticlepolymerCarbon nanotubesXPSCarbon nanotubes; xps; Multiwalledplasma etchingMultiwalledcarbon nanotubecarbon nanotubes; nanoparticles; plasma etching; polymers; XPS
researchProduct