Search results for " accretion"

showing 10 items of 122 documents

Broadband X-ray spectral variability of the pulsing ULX NGC 1313 X-2

2021

[Context] It is thought that ultraluminous X-ray sources (ULXs) are mainly powered by super-Eddington accreting neutron stars or black holes as shown by the recent discovery of X-ray pulsations and relativistic winds. [Aims] This work presents a follow-up study of the spectral evolution over two decades of the pulsing ULX NGC 1313 X-2 in order to understand the structure of the accretion disc. The primary objective is to determine the shape and nature of the dominant spectral components by investigating their variability with the changes in the source luminosity. [Methods[ We performed a spectral analysis over the canonical 0.3-10.0 keV energy band of all the high signal-to-noise XMM-Newton…

AccretionULXsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)Astrophysicsindividuals: NGC 1313 X-2 [X-rays]Astrophysics::Cosmology and Extragalactic AstrophysicsSpectral lineSettore FIS/05 - Astronomia E AstrofisicaX-rays: Individuals: NGC 1313 X-2ThermalCutoffAstrophysics::Solar and Stellar AstrophysicsBlack-body radiationX-rays: BinariesAstrophysics::Galaxy AstrophysicsPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)Astronomy and AstrophysicsRadiusAccretion accretion disksNeutron starSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: individuals:NGC 1313 X-2
researchProduct

Aperiodic variability of low-mass X-ray binaries at very low frequencies

2003

We have obtained discrete Fourier power spectra of a sample of persistent low-mass neutron-star X-ray binaries using long-term light curves from the All Sky Monitor on board the Rossi X-ray Timing Explorer. Our aim is to investigate their aperiodic variability at frequencies in the range 1 x 10^{-7}-5 x 10^{-6} Hz and compare their properties with those of the black-hole source Cyg X-1. We find that the classification scheme that divides LMXBs into Z and atoll sources blurs at very low frequencies. Based on the long-term (~ years) pattern of variability and the results of power-law fits (P ~ v^{-a}) to the 1 x 10^{-7}-5 x 10^{-6} Hz power density spectra, low-mass neutron-star binaries fall…

Accretionmedia_common.quotation_subjectFOS: Physical sciencesAstrophysicsNeutronAstrophysicsNeutron ; Binaries ; X-rays ; Binaries ; Accretion ; Accretion discsUNESCO::ASTRONOMÍA Y ASTROFÍSICASpectral lineX-raysNeutronmedia_commonPhysicsAccretion (meteorology)Astrophysics (astro-ph)BinariesX-rayAstronomy and AstrophysicsLight curve:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Space and Planetary ScienceAperiodic graphSkyUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaLow MassAccretion discs:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Accrétion et éjection dans les systèmes binaires X transitoires à trous noirs : le cas de GRS 1716-249

2020

I buchi neri transienti (BHT) sono tra le sorgenti con emissione ai raggi X più luminose della galassia. Grazie all’elevato flusso in banda X e alla loro alta variabilità temporale. queste sorgenti offrono un’opportunità unica per studiare la fisica dell’accrescimento in straordinareie condizioni fisiche. I BHT mostrano episodici outburst caratterizzati da diverse luminosità in banda X e γ, diverse forme spettrali e proprietà della variabilità temporale. L’obiettivo di questa tesi è lo studio della geometria, dei meccanismi e dei processi fisici coinvolti nell’emissione del buco nero transiente GRS 716-249. Di seguito presento l’analisi spettrale e temporale delle osservazioni della GRS 171…

AccrétionTrou noir physiqueAccretionX-rays : binaries[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Gamma-rays : generalRayons X : binairesgamma-rays: generalBlack hole physicsDisque d'accrétionX-rays: generalRayons X : généralstars: jetsX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion accretion discsÉtoiles : jetRayons gamma : généralStars : jetsAccretion discsX-rays : general
researchProduct

Neutrino pair annihilation near accreting, stellar-mass black holes

2006

We investigate the energy-momentum deposition due to neutrino-antineutrino annihilation in the vicinity of axisymmetric, accreting black holes (BHs) by numerically ray-tracing neutrino trajectories in a Kerr space-time. Hyperaccreting stellar-mass BHs are widely considered as energy sources that can drive ultrarelativistic outflows with the potential to produce gamma-ray bursts. In contrast to earlier works, we provide an extensive and detailed parameter study of the influence of general relativistic (GR) effects and of different neutrinosphere geometries. These include idealized thin disks, tori, and spheres, or are constructed as non-selfgravitating equilibrium matter distributions for va…

Angular momentumAccretionStellar massAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsNeutronUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsRelativityNeutrinosPhysicsBurstsAnnihilationAstrophysics (astro-ph)Gamma raysAstronomy and AstrophysicsTorusRadiusBlack hole physicsGamma rays ; Bursts ; Neutrinos ; Accretion ; Accretion disks ; Relativity ; Black hole physics ; Neutron:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Space and Planetary ScienceAccretion disksSPHERESUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaNeutrinoEnergy source:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

2017

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $\dot{\nu}_{\text{SD}}=1.5(2)\times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatibl…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsCompact star01 natural sciencespulsars: individual: SAX J1808.4-3658Gravitationstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsOrbital periodaccretion accretion discs; stars: neutron; pulsars: individual: SAX J1808.4-3658; X-rays: binaries13. Climate actionSpace and Planetary ScienceQuadrupole:accretion accretion discAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

2014

According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a significant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but mo…

Angular momentumMHDStars: flareAstrophysics::High Energy Astrophysical PhenomenaYoung stellar objectFOS: Physical sciencesInterplanetary mediumAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAcoustics and UltrasonicAccretion accretion diskIntermediate polarAstrophysics::Solar and Stellar AstrophysicsX-rays: starSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsNuclear and High Energy PhysicGeneral Environmental SciencePhysicsRadiationStar formationAstronomyAccretion (astrophysics)StarsAstrophysics - Solar and Stellar Astrophysicslcsh:TA1-2040Space and Planetary ScienceStars: circumstellar matterGeneral Earth and Planetary SciencesCircumstellar dustAstrophysics::Earth and Planetary Astrophysicslcsh:Engineering (General). Civil engineering (General)Stars: pre-main-sequenceActa Polytechnica CTU Proceedings
researchProduct

Steady shocks around black holes produced by sub-keplerian flows with negative energy

2005

We discuss a special case of formation of axisymmetric shocks in the accretion flow of ideal gas onto a Schwarzschild black hole: when the total energy of the flow is negative. The result of our analysis enlarges the parameter space for which these steady shocks are exhibited in the accretion of gas rotating around relativistic stellar objects. Since keplerian disks have negative total energy, we guess that, in this energy range, the production of the shock phenomenon might be easier than in the case of positive energy. So our outcome reinforces the view that sub-keplerian flows of matter may significantly affect the physics of the high energy radiation emission from black hole candidates. …

Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesaccretion accretion disks black hole physics hydrodynamics instabilitiesAstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379-3747

2018

We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond puls…

Astrophysics::High Energy Astrophysical PhenomenaBrown dwarfFOS: Physical sciencesgeneral; stars: neutron; X-rays: binaries; accretion accretion disks [binaries]AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesstars: neutronSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsOrbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsOrbital periodX-rays: binarieNeutron starbinaries: generalSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371

2015

We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at $\sim 0.7$ keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering …

Astrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaAccretion accretion diskAstrophysics::Solar and Stellar AstrophysicsAbsorption (logic)Continuum (set theory)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: magnetic fieldStars: individual: X1822-371Astronomy and AstrophysicsRadiusAstronomy and AstrophysicX-rays: binarieInterstellar mediumNeutron starSpace and Planetary ScienceEddington luminositysymbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

On obtaining neutron star mass and radius constraints from quiescent low-mass X-ray binaries in the Galactic plane

2018

X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primarily because of their well-constrained distances. Here, we study Chandra data of seven transient LMXBs in the Galactic plane in quiescence to investigate the potential of constraining the radius (and mass) of the NSs inhabiting these systems. We find that only two of these objects had X-ray spectra of sufficient quality to obtain reasonable constraints on the radius, with the most stringent being an upper limit of $R\lesssim$14.5 km for EXO 0748-…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E Astrofisicaneutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion discs; Dense matter; Equation of state; Stars]0103 physical sciencesAccretion accretion disc010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Equation of stateAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusAstronomy and AstrophysicGalactic planeSpectral componentX-rays: binarieStars: neutronNeutron starSpace and Planetary ScienceGlobular clusterAstrophysics - High Energy Astrophysical PhenomenaLow MassDense matterMonthly Notices of the Royal Astronomical Society
researchProduct