Search results for " accretion"
showing 10 items of 122 documents
A faint outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021 in NGC 6440
2018
SAX J1748.9-2021 is an accreting X-ray millisecond pulsar observed in outburst five times since its discovery in 1998. In early October 2017, the source started its sixth outburst, which lasted only ~13 days, significantly shorter than the typical 30 days duration of the previous outbursts. It reached a 0.3-70 keV unabsorbed peak luminosity of $\sim3\times10^{36}$ erg/s. This is the weakest outburst ever reported for this source to date. We analyzed almost simultaneous XMM-Newton, NuSTAR and INTEGRAL observations taken during the decaying phase of its 2017 outburst. We found that the spectral properties of SAX J1748.9-2021 are consistent with an absorbed Comptonization plus a blackbody comp…
Study of the reflection spectrum of the LMXB 4U 1702-429
2016
The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( $\sim10^{37}$ erg s$^{-1}$) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60$^{\circ}$.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A bro…
The Close T Tauri Binary System V4046 Sgr: Rotationally Modulated X-Ray Emission from Accretion Shocks
2012
We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n_e ~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength campaign aims to simultaneously constrain the properties of this X-ray emitting plasma, the large scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotatio…
Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL
2015
Broad emission features of abundant chemical elements, such as Iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc where doppler an…
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
2013
(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…
YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission
2013
Context. Theoretical arguments and numerical simulations of radiative shocks produced by the impact of the accreting gas onto young stars predict quasi-periodic oscillations in the emitted radiation. However, observational data do not show evidence of such periodicity. Aims. We investigate whether physically plausible perturbations in the accretion column or in the chromosphere could disrupt the shock structure influencing the observability of the oscillatory behavior. Methods. We performed local 2D magneto-hydrodynamical simulations of an accretion shock impacting a chromosphere, taking optically thin radiation losses and thermal conduction into account. We investigated the effects of seve…
New insights on the puzzling LMXB 1RXS J180408.9-342058: the intermediate state, the clocked type-I X-ray bursts and much more
2019
1RXS J180408.9--342058 is a low mass X-ray binary hosting a neutron star, which shows X-ray activity at very different mass-accretion regimes, from very faint to almost the Eddington luminosity. In this work, we present a comprehensive X-ray study of this source using data from the Neil Gehrels Swift Observatory, NuSTAR and INTEGRAL/JEM-X. In order to follow the spectral evolution, we analysed the 2015 outburst using Swift data and three Nustar observations. Besides the canonical hard and soft spectral states, we identified the rarely observed intermediate state. This was witnessed by the appeareance of the accretion disk emission in the spectrum (at $kT_{\rm disk}$ $\sim$0.7 keV) and the s…
The NHXM observatory
2011
Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…
Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope
2020
All authors: Wielgus, Maciek; Akiyama, Kazunori; Blackburn, Lindy; Chan, Chi-kwan; Dexter, Jason; Doeleman, Sheperd S.; Fish, Vincent L.; Issaoun, Sara; Johnson, Michael D.; Krichbaum, Thomas P.; Lu, Ru-Sen; Pesce, Dominic W.; Wong, George N.; Bower, Geoffrey C.; Broderick, Avery E.; Chael, Andrew; Chatterjee, Koushik; Gammie, Charles F.; Georgiev, Boris; Hada, Kazuhiro Loinard, Laurent; Markoff, Sera; Marrone, Daniel P.; Plambeck, Richard; Weintroub, Jonathan; Dexter, Matthew; MacMahon, David H. E.; Wright, Melvyn; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barausse, Enrico; Barrett, John; Bintley, Dan; Boland, Wilf…
Revealing the structure of the lensed quasar Q 0957+561. I. Accretion disk size
2021
We thank the anonymous referee for the helpful comments, and constructive remarks on this manuscript. We thank the GLENDAMA project for making publicly available the monitoring data of Q 0957+561. C.F. gratefully acknowledges the financial support from Tel Aviv University and University of Haifa through a DFG grant HA3555-14/1. E.M. and J.A.M are supported by the Spanish MINECO with the grants AYA2016- 79104-C3-1-P and AYA2016-79104-C3-3-P. J.A.M. is also supported from the Generalitat Valenciana project of excellence Prometeo/2020/085. J.J.V. is supported by the project AYA2017-84897-P financed by the Spanish Ministerio de Economia y Competividad and by the Fondo Europeo de Desarrollo Regi…