Search results for " acoustic"

showing 10 items of 344 documents

Cross-Spectrum PM Noise Measurement, Thermal Energy, and Metamaterial Filters.

2017

International audience; Virtually all commercial instruments for the measurement of the oscillator PM noise make use of the crossspectrum method (arXiv:1004.5539 [physics.ins-det], 2010). High sensitivity is achieved by correlation and averaging on two equal channels, which measure the same input, and reject the background of the instrument.We show that a systematic error is always present if the thermal energy of the input power splitter is not accounted for. Such error can result in noise underestimation up to a few decibels in the lowest-noise quartz oscillators, and in an invalid measurement in the case of cryogenic oscillators. As another alarming fact, the presence of metamaterial com…

Physics[SPI.OTHER]Engineering Sciences [physics]/OtherAcoustics and UltrasonicsOscillator phase noiseNoise measurementbusiness.industryNoise spectral densityNoise figure01 natural sciencesNoise (electronics)Noise floor010309 opticsOptics0103 physical sciencesPhase noiseEffective input noise temperatureElectrical and Electronic Engineeringbusiness010301 acousticsInstrumentationIEEE transactions on ultrasonics, ferroelectrics, and frequency control
researchProduct

A study on the distribution of the envelope and the capacity of underwater acoustic channels

2014

This paper deals with the statistical analysis of the instantaneous capacity of shallow underwater acoustic communication (UWAC) channels under the assumption that the scatterers are randomly distributed on the surface and bottom of the ocean. We start by deriving exact closed-form expressions for the probability density function (PDF) of the total propagation path length from which the PDF of the path gains is obtained. Then, we study the distributions of the channel envelope and the capacity under line-of-sight (LOS) conditions. By performing the chi-square goodness-of-fit test, it is shown that the channel envelope is Rice distributed. Moreover, we investigate the effect of the ocean dep…

Physicsbusiness.industryAcousticsProbability density functionChannel capacityPath lengthPath (graph theory)UnderwaterTelecommunicationsbusinessEnvelope (mathematics)Underwater acoustic communicationComputer Science::Information TheoryCommunication channel2014 IEEE International Conference on Communication Systems
researchProduct

Synchronized photonic modulators driven by surface acoustic waves

2013

Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180 degrees-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms. (C) 2013 Optical Society of America

Physicsbusiness.industrySurface acoustic wavePhotonic integrated circuitPhysics::OpticsIntegrated optics devicesAcoustic waveModulatorsSound powerAtomic and Molecular Physics and Opticslaw.inventionÒptica Aparells i instrumentsTECNOLOGIA ELECTRONICAOpticsAcousto-optical deviceslawSurface waveTEORIA DE LA SEÑAL Y COMUNICACIONESOptoelectronicsPhotonicsbusinessWaveguideBlock (data storage)
researchProduct

Large-scale inhomogeneities may improve the cosmic concordance of supernovae

2010

We reanalyze the supernovae data from the Union Compilation including the weak lensing effects caused by inhomogeneities. We compute the lensing probability distribution function for each background solution described by the parameters Omega_M, Omega_L and w in the presence of inhomogeneities, approximately modeled with a single-mass population of halos. We then perform a likelihood analysis in the space of FLRW-parameters and compare our results with the standard approach. We find that the inclusion of lensing can move the best-fit model significantly towards the cosmic concordance of the flat LCDM model, improving the agreement with the constraints coming from the cosmic microwave backgro…

Physicseducation.field_of_studyCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsCosmic microwave backgroundPopulationDark matterGeneral Physics and AstronomyFOS: Physical sciencesLambda-CDM modelAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyObservational cosmology0103 physical sciencesDark energyBaryon acoustic oscillationseducation010303 astronomy & astrophysicsWeak gravitational lensingAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Population dynamics based on ladder bosonic operators

2021

Abstract We adopt an operatorial method, based on truncated bosons, to describe the dynamics of populations in a closed region with a non trivial topology. The main operator that includes the various mechanisms and interactions between the populations is the Hamiltonian, constructed with the density and transport operators. The whole evolution is derived from the Schrodinger equation, and the densities of the populations are retrieved from the normalized expected values of the density operators. We show that this approach is suitable for applications in very large domain, solving the computational issues that typically occur when using an Hamiltonian based on fermionic ladder operators.

Physicseducation.field_of_studyPopulation dynamicsApplied MathematicsPopulation02 engineering and technologyExpected value01 natural sciencesSchrödinger equationsymbols.namesake020303 mechanical engineering & transportsOperator (computer programming)Ladder operator0203 mechanical engineeringTrivial topologySchrödinger dynamicsModeling and Simulation0103 physical sciencessymbolsStatistical physicsOperatorial modelseducationHamiltonian (quantum mechanics)010301 acousticsBosonApplied Mathematical Modelling
researchProduct

Piezoelectric Actuated Nonlinear Energy Sink With Tunable Attenuation Efficiency

2019

Abstract Comparing to linear vibration absorbers, nonlinear energy sinks (NESs) have attracted worldwide attention for their intrinsic characteristics of targeted energy transfer or energy pumping in a relatively wide frequency range. Unfortunately, they are highly dependent on the vibration amplitude to be attenuated and will play its role only if the external load exceeds a specific threshold value. Different from the passive bistable NES, a novel piezoelectric nonlinear energy sink (PNES) is designed by introducing in-phase actuation to compensate or enhance the external vibration loads, thus triggering the NES operating in high attenuation efficiency. The nonlinear mathematic model of t…

Physicsgeographygeography.geographical_feature_categoryCantileverbusiness.industryMechanical EngineeringAttenuationCondensed Matter Physics01 natural sciencesPiezoelectricitySink (geography)010305 fluids & plasmasNonlinear systemMechanics of Materials0103 physical sciencesOptoelectronicsbusiness010301 acousticsExcitationJournal of Applied Mechanics
researchProduct

RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

2008

The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies (LRG) of the Sloan Digital Sky Survey (SDSS). The final release (DR7) of the SDSS has been recently made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the 2dF redshift survey. We test the reliability of the det…

Physicsmedia_common.quotation_subjectAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCorrelation function (astronomy)AstrophysicsRedshift surveyGalaxyRedshiftBaryonDistribution (mathematics)Space and Planetary ScienceSkyBaryon acoustic oscillationsAstrophysics::Galaxy Astrophysicsmedia_commonThe Astrophysical Journal
researchProduct

A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice

2021

Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle …

Physiology5-trial SM 5-trial social memoryBiochemistryFight-or-flight responseFST forced swim test0302 clinical medicineEndocrinologySSRIs selective serotonin reuptake inhibitorsDSM-5 Diagnostic and Statistical Manual of Mental DisordersOriginal Research ArticleFear conditioningmedia_commonHT hypothalamusAIS arousal-based individual screeningQP351-495ParoxetinePhenotypeHPA hypothalamic–pituitary–adrenalBST basal synaptic transmissionHIP hippocampusPTSD post-traumatic stress disorder[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Psychological resilienceAmy amygdalaRC321-571medicine.drugNeurophysiology and neuropsychologymedia_common.quotation_subjectBDNF brain derived neurotropic factorFear conditioningNeurosciences. Biological psychiatry. NeuropsychiatryBiologyStressArousal03 medical and health sciencesCellular and Molecular NeuroscienceAnimal model Fear conditioning Resilience Stress Susceptibility Z-scoreAnimal modelCORT corticosteroneOF open fieldTE trauma-exposedBiological neural networkmedicineAnimal model[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]C controlfEPSPs field excitatory post-synaptic potentialsSGK1 serum/glucocorticoid-regulated kinase 1RC346-429Molecular BiologyResilienceEndocrine and Autonomic SystemsZ-scoremPFC medial prefrontal cortexFKBP5 FK506 binding protein 5FDA Food and Drug AdministrationASR acoustic startle reactivityEPM elevated plus maze030227 psychiatrySusceptibilityAnimal model; Fear conditioning; Resilience; Stress; Susceptibility; Z-scoreNeurology. Diseases of the nervous systemNeuroscience030217 neurology & neurosurgeryNeurobiology of Stress
researchProduct

Detection of events by means of plane wave decomposition analysis and cross-correlation technniques using a circular array of microphones

2013

[EN] This article deals with the study and analysis of room acoustics through a process of sound field decomposition sampled with microphones circular arrays. The spatial characteristics of the sound field inside a room can be meaningfully described by means of microphone array processing techniques. In this context, the set of impulse responses sampled by a microphone array can be seen as an image made of acoustic planewave footprints. Due to the circular geometry of the microphone array, these footprints have a cosine-like shape that can be fully described as a function of the direction of arrival (DOA) of the impinging plane wave.Plane-wave decomposition (PWD) technique using microphone …

Plane wave decompositionCircular microphone arraysCross-correlationTEORIA DE LA SEÑAL Y COMUNICACIONESDetection of acoustic eventsCross-correlation methodRoom acousticsComunicación Audiovisual y PublicidadMicrophone arraysSound field analysis
researchProduct

Path integral solution for nonlinear systems under parametric Poissonian white noise input

2016

Abstract In this paper the problem of the response evaluation in terms of probability density function of nonlinear systems under parametric Poisson white noise is addressed. Specifically, extension of the Path Integral method to this kind of systems is introduced. Such systems exhibit a jump at each impulse occurrence, whose value is obtained in closed form considering two general classes of nonlinear multiplicative functions. Relying on the obtained closed form relation liking the impulses amplitude distribution and the corresponding jump response of the system, the Path Integral method is extended to deal with systems driven by parametric Poissonian white noise. Several numerical applica…

Poisson white noiseMonte Carlo methodAerospace EngineeringOcean EngineeringProbability density function02 engineering and technologyImpulse (physics)01 natural sciencesPath integral solution0203 mechanical engineering0103 physical sciencesApplied mathematics010301 acousticsCivil and Structural EngineeringMathematicsParametric statisticsMechanical EngineeringMathematical analysisStatistical and Nonlinear PhysicsWhite noiseCondensed Matter PhysicsJump responseNonlinear system020303 mechanical engineering & transportsParametric inputNuclear Energy and EngineeringPath integral formulationNonlinear system
researchProduct