Search results for " agent"

showing 10 items of 7765 documents

Reversal of multidrug resistance by Marsdenia tenacissima and its main active ingredients polyoxypregnanes.

2016

Abstract Ethnopharmacological relevance Multidrug resistance (MDR) of cancer is often associated with the overexpression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), multidrug resistance-associated protein-1 (MRP-1) and breast cancer resistance protein (BCRP or ABCG2), in cancer cells, which facilitates the active efflux of a wide variety of chemotherapeutic drugs out of the cells. Marsdenia tenacissima is a traditional Chinese medicinal herb that has long been clinically used for treatment of cancers, particularly in combinational use with anticancer drugs. Polyoxypregnanes (POPs) are identified as main constituents of this herb, and three of them have been re…

0301 basic medicineDrugAbcg2media_common.quotation_subjectAntineoplastic AgentsPharmacology03 medical and health sciences0302 clinical medicineCell Line TumorNeoplasmsDrug DiscoverymedicineATP Binding Cassette Transporter Subfamily G Member 2HumansATP Binding Cassette Transporter Subfamily B Member 1P-glycoproteinmedia_commonPharmacologybiologyChemistryPlant ExtractsCancerMarsdeniaTransportermedicine.diseaseFlow CytometryPregnanesDrug Resistance MultipleNeoplasm ProteinsMultiple drug resistanceGene Expression Regulation NeoplasticMolecular Docking Simulation030104 developmental biologyDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer cellbiology.proteinEffluxMultidrug Resistance-Associated ProteinsJournal of ethnopharmacology
researchProduct

Cancer combination therapies with artemisinin-type drugs

2017

Artemisia annua L. is a Chinese medicinal plant, which is used throughout Asia and Africa as tea or press juice to treat malaria. The bioactivity of its chemical constituent, artemisinin is, however, much broader. We and others found that artemisinin and its derivatives also exert profound activity against tumor cells in vitro and in vivo. Should artemisinin-type drugs be applied routinely in clinical oncology in the future, then it should probably be as part of combination therapy regimens rather than as monotherapy. In the present review, I give a comprehensive overview on synergistic and additive effects of artemisinin-type drugs in combination with different types of cytotoxic agents an…

0301 basic medicineDrugCombination therapymedicine.medical_treatmentmedia_common.quotation_subjectArtemisia annuaDrug resistancePharmacologyBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineIn vivoCell Line TumorNeoplasmsAntineoplastic Combined Chemotherapy Protocolsparasitic diseasesmedicineAnimalsHumansDrug InteractionsArtemisininmedia_commonPharmacologyBiological ProductsChemotherapyNatural productbiologybusiness.industryDrug SynergismDrugs Investigationalbiology.organism_classificationAntineoplastic Agents PhytogenicCombined Modality TherapyArtemisininsDrug Resistance Multiple030104 developmental biologychemistryDrug Resistance Neoplasm030220 oncology & carcinogenesisChemical and Drug Induced Liver InjurybusinessSesquiterpenesmedicine.drugBiochemical Pharmacology
researchProduct

Drug metabolism by cultured human hepatocytes: how far are we from the in vivo reality?

2004

The investigation of metabolism is an important milestone in the course of drug development. Drug metabolism is a determinant of drug pharmacokinetics variability in human beings. Fundamental to this are phenotypic differences, as well as genotypic differences, in the expression of the enzymes involved in drug metabolism. Genotypic variability is easy to identify by means of polymerase chain reaction-based or DNA chip-based methods, whereas phenotypic variability requires direct measurement of enzyme activities in liver, or, indirectly, measurement of the rate of metabolism of a given compound in vivo. There is a great deal of phenotypic variability in human beings, only a minor part being…

0301 basic medicineDrugDiclofenacmedia_common.quotation_subjectBiologyPharmacologyToxicologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineCytochrome P-450 Enzyme SystemIn vivoGenetic variationmedicineHumansCells Culturedmedia_common030102 biochemistry & molecular biologyAnti-Inflammatory Agents Non-SteroidalGenetic VariationGeneral MedicineMetabolismIn vitroMedical Laboratory TechnologyDrug developmentBiochemistryLiverPharmaceutical Preparations030220 oncology & carcinogenesisMultigene FamilyHepatocytesAceclofenacDrug metabolismmedicine.drugAlternatives to laboratory animals : ATLA
researchProduct

Abacavir Induces Arterial Thrombosis in a Murine Model.

2018

Background The purinergic system is known to underlie prothrombotic and proinflammatory vascular programs, making the profile of experimental actions demonstrated by abacavir compatible with thrombogenesis. However, direct evidence of a prothrombotic effect by the drug has been lacking. Methods The present study appraised the effects of abacavir in a well-validated animal model of arterial thrombosis. The role of ATP-P2X7 receptors in the actions of the drug was also assessed, and the actions of recognized vascular-damaging agents and other nucleoside reverse-transcriptase inhibitors (NRTIs) were evaluated and compared to those of abacavir. Results Abacavir dose-dependently promoted thrombu…

0301 basic medicineDrugMaleAnti-HIV Agentsmedia_common.quotation_subject030204 cardiovascular system & hematologyPharmacologyProinflammatory cytokine03 medical and health sciences0302 clinical medicineimmune system diseasesAbacavirmedicineImmunology and AllergyAnimalsRofecoxibmedia_commonMice KnockoutDose-Response Relationship Drugbusiness.industryPurinergic receptorAntagonistvirus diseasesThrombosisPurinergic signallingmedicine.diseaseThrombosisDideoxynucleosidesDisease Models Animal030104 developmental biologyInfectious DiseasesReceptors Purinergic P2X7businessmedicine.drugThe Journal of infectious diseases
researchProduct

Shikonin derivatives for cancer prevention and therapy.

2019

Abstract Phytochemicals gained considerable interest during the past years as source to develop new treatment options for chemoprevention and cancer therapy. Motivated by the fact that a majority of established anticancer drugs are derived in one way or another from natural resources, we focused on shikonin, a naphthoquinone with high potentials to be further developed as preventive or therapeutic drug to fight cancer. Shikonin is the major chemical component of Lithospermum erythrorhizon (Purple Cromwell) roots. Traditionally, the root extract has been applied to cure dermatitis, burns, and wounds. Over the past three decades, the anti-inflammatory and anticancer effects of root extracts, …

0301 basic medicineDrugModels MolecularCancer Researchmedicine.medical_treatmentmedia_common.quotation_subject03 medical and health sciencesStructure-Activity Relationship0302 clinical medicineNeoplasmsMedicineAnimalsHumansmedia_commonCancer preventionTraditional medicinebiologybusiness.industryCancerImmunotherapyLithospermum erythrorhizonbiology.organism_classificationmedicine.diseaseAntineoplastic Agents PhytogenicClinical trialRadiation therapy030104 developmental biologyOncologyPhytochemical030220 oncology & carcinogenesisbusinessDrugs Chinese HerbalNaphthoquinonesCancer letters
researchProduct

Kinase Inhibitors in Multitargeted Cancer Therapy

2017

The old-fashioned anticancer approaches, aiming in arresting cancer cell proliferation interfering with non-specific targets (e.g. DNA), have been replaced, in the last decades, by more specific target oriented ones. Nonetheless, single-target approaches have not always led to optimal outcomes because, for its complexity, cancer needs to be tackled at various levels by modulation of several targets. Although at present, combinations of individual single-target drugs represent the most clinically practiced therapeutic approaches, the modulation of multiple proteins by a single drug, in accordance with the polypharmacological strategy, has become more and more appealing. In the perspective of…

0301 basic medicineDrugNiacinamideIndolesPyridinesmedia_common.quotation_subjectPharmacologyBioinformaticsBiochemistryReceptor tyrosine kinase03 medical and health sciencesCrizotinibPiperidinesMultitargeted drugs anticancer agents polypharmacology tyrosine kinase receptors oncogene addiction tumor microenvironment FDA-approved drugsNeoplasmsDrug DiscoverymedicineSunitinibHumansAnilidesPyrrolesProtein Kinase Inhibitorsmedia_commonPharmacologyTumor microenvironmentbiologybusiness.industryPhenylurea CompoundsOrganic ChemistryImidazolesCancerReceptor Protein-Tyrosine KinasesSorafenibmedicine.diseaseOncogene AddictionSettore CHIM/08 - Chimica FarmaceuticaClinical trialPyridazines030104 developmental biologyMechanism of actionbiology.proteinImatinib MesylateQuinazolinesMolecular MedicinePyrazolesmedicine.symptombusinessTyrosine kinase
researchProduct

Towards patient stratification and treatment in the autoimmune disease lupus erythematosus using a systems pharmacology approach

2015

Drug development in Systemic Lupus Erythematosus (SLE) has been hindered by poor translation from successful preclinical experiments to clinical efficacy. This lack of success has been attributed to the high heterogeneity of SLE patients and to the lack of understanding of disease physiopathology. Modelling approaches could be useful for supporting the identification of targets, biomarkers and patient subpopulations with differential response to drugs. However, the use of traditional quantitative models based on differential equations is not justifiable in a sparse data situation. Boolean networks models are less demanding on the required data to be implemented and can provide insights into…

0301 basic medicineDrugSystems biologymedia_common.quotation_subjectPharmaceutical ScienceAntineoplastic AgentsDiseaseBioinformaticsAutoimmune Diseases03 medical and health sciencesmedicineAnimalsCluster AnalysisHumansLupus Erythematosus SystemicComputer Simulationmedia_commonAutoimmune diseaseLupus erythematosusbusiness.industrySystems Biologymedicine.diseaseTreatment Outcome030104 developmental biologyDrug developmentPharmacology ClinicalbusinessBiological networkSystems pharmacologyEuropean Journal of Pharmaceutical Sciences
researchProduct

Cardiovascular toxicity of abacavir: a clinical controversy in need of a pharmacological explanation.

2017

: There is a long-lasting controversy surrounding an association between abacavir (ABC) and an increased risk of cardiovascular disease in HIV-positive patients. Although differing in their specifics, a number of published cohort studies and clinical trials support such an association, usually relating it to recent exposure to the drug, independently of traditional predisposing factors. However, other clinical trials have failed to reveal such a relation and have pointed to methodological differences to explain discrepancies. Significantly, the controversy has been fueled by the lack of a credible mechanism of action to justify the putative detrimental actions of ABC. There is a myriad of c…

0301 basic medicineDrugVasculitisAnti-HIV Agentsmedia_common.quotation_subjectImmunologyHIV InfectionsDiseasePharmacologyBioinformaticsProinflammatory cytokine03 medical and health sciencesParacrine signallingchemistry.chemical_compound0302 clinical medicineAbacavirImmunology and AllergyMedicineHumans030212 general & internal medicineCyclic guanosine monophosphatemedia_commonbusiness.industryAtherosclerosis030112 virologyDideoxynucleosidesClinical trialInfectious DiseaseschemistryMechanism of actionCardiovascular Diseasesmedicine.symptombusinessmedicine.drugAIDS (London, England)
researchProduct

Overview of key molecular and pharmacological targets for diabetes and associated diseases

2021

Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by c…

0301 basic medicineDrugmedia_common.quotation_subjectDiseaseType 2 diabetesBioinformatics030226 pharmacology & pharmacyGeneral Biochemistry Genetics and Molecular BiologyNephropathyDiabetes Complications03 medical and health sciences0302 clinical medicineDiabetes mellitusDrug DiscoveryDiabetes MellitusAnimalsHumansHypoglycemic AgentsMedicineMolecular Targeted TherapyPharmacology & PharmacyGeneral Pharmacology Toxicology and Pharmaceuticsmedia_commonGlycemicbusiness.industry0601 Biochemistry and Cell Biology 1115 Pharmacology and Pharmaceutical SciencesGeneral MedicineMolecular PharmacologyA300medicine.diseaseHuman genetics030104 developmental biologybusinessSignal Transduction
researchProduct

Advances in drug-induced cholestasis: Clinical perspectives, potential mechanisms and in vitro systems

2018

Despite growing research, drug-induced liver injury (DILI) remains a serious issue of increasing importance to the medical community that challenges health systems, pharmaceutical industries and drug regulatory agencies. Drug-induced cholestasis (DIC) represents a frequent manifestation of DILI in humans, which is characterised by an impaired canalicular bile flow resulting in a detrimental accumulation of bile constituents in blood and tissues. From a clinical point of view, cholestatic DILI generates a wide spectrum of presentations and can be a diagnostic challenge. The drug classes mostly associated with DIC are anti-infectious, anti-diabetic, anti-inflammatory, psychotropic and cardiov…

0301 basic medicineDrugmedicine.drug_classmedia_common.quotation_subjectReceptors Cytoplasmic and NuclearMiscellaneous DrugsIn Vitro TechniquesToxicologyBioinformaticsBile flow03 medical and health sciences0302 clinical medicineCholestasismedicineAnimalsBileHumansDrug induced cholestasismedia_commonCholestasisPolymorphism GeneticBile acidbusiness.industryMembrane Transport ProteinsGeneral Medicinemedicine.diseaseGastrointestinal MicrobiomeMicroRNAs030104 developmental biologyCardiovascular agent030211 gastroenterology & hepatologyChemical and Drug Induced Liver InjurybusinessFood ScienceHealthcare systemFood and Chemical Toxicology
researchProduct