Search results for " alpha"
showing 10 items of 1610 documents
Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ
2018
Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP), on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The r…
Immunological features of coronavirus disease 2019 in patients with cancer.
2020
Background Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has caused a major pandemic. Patients with cancer are at higher risk of severe COVID-19. We aimed to describe and compare the immunological features of cancer patients hospitalised for COVID-19 or other concomitant, cancer-related illness. Methods In this prospective study, the clinical and immunological characteristics of 11 cancer patients with COVID-19 and 11 non–COVID-19 cancer patients hospitalised in the same unit at the same period for other medical issues were analysed. We also used 10 healthy volunteers as controls. Peripheral immune parameters were analysed using multiparamet…
The iNOS Activity During an Immune Response Controls the CNS Pathology in Experimental Autoimmune Encephalomyelitis
2019
Inducible nitric oxide synthase (iNOS) plays a critical role in the regulation of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Previous studies have shown that iNOS plays pathogenic as well as regulatory roles in MS and EAE. However, how does iNOS alters the pathophysiology of the central nervous system (CNS) in neuronal autoimmunity is not clearly understood. In the present work, we show that treatment of mice with L-NAME, an iNOS inhibitor, during the antigen-priming phase primarily alters brain pathology, while in the subsequent effector phase of the immune response, the spinal cord is involved. Inhibition of iNOS during the priming phase of the immune res…
Macrophage Migration Inhibitory Factor Induces Inflammation and Predicts Spinal Progression in Ankylosing Spondylitis
2017
Objectives: To understand the role of macrophage migration inhibitory factor (MIF) in the pathogenesis of Ankylosing Spondylitis (AS). Methods: AS patients satisfying the modified New York criteria were recruited for the study. Healthy volunteers, rheumatoid arthritis and osteoarthritis patients were included as controls. Based on the annual rate of increase in mSASSS scores, AS patients were classified as progressors or non-progressors. MIF levels were quantitated by ELISA in the serum and synovial fluid. Predictors of AS progression were studied by logistic regression analysis. Immunohistochemistry of ileal tissue was performed to identify MIF producing cells. Flow cytometry was used to r…
Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs
2020
Abstract Myeloid-derived suppressor cells (MDSC) include immature monocytic (M-MDSC) and granulocytic (PMN-MDSC) cells that share the ability to suppress adaptive immunity and to hinder the effectiveness of anticancer treatments. Of note, in response to IFNγ, M-MDSCs release the tumor-promoting and immunosuppressive molecule nitric oxide (NO), whereas macrophages largely express antitumor properties. Investigating these opposing activities, we found that tumor-derived prostaglandin E2 (PGE2) induces nuclear accumulation of p50 NF-κB in M-MDSCs, diverting their response to IFNγ toward NO-mediated immunosuppression and reducing TNFα expression. At the genome level, p50 NF-κB promoted binding …
PHD3 Controls Lung Cancer Metastasis and Resistance to EGFR Inhibitors through TGFα.
2018
Abstract Lung cancer is the leading cause of cancer-related death worldwide, in large part due to its high propensity to metastasize and to develop therapy resistance. Adaptive responses to hypoxia and epithelial–mesenchymal transition (EMT) are linked to tumor metastasis and drug resistance, but little is known about how oxygen sensing and EMT intersect to control these hallmarks of cancer. Here, we show that the oxygen sensor PHD3 links hypoxic signaling and EMT regulation in the lung tumor microenvironment. PHD3 was repressed by signals that induce EMT and acted as a negative regulator of EMT, metastasis, and therapeutic resistance. PHD3 depletion in tumors, which can be caused by the EM…
Trabectedin Overrides Osteosarcoma Differentiative Block and Reprograms the Tumor Immune Environment Enabling Effective Combination with Immune Check…
2016
Abstract Purpose: Osteosarcoma, the most common primary bone tumor, is characterized by an aggressive behavior with high tendency to develop lung metastases as well as by multiple genetic aberrations that have hindered the development of targeted therapies. New therapeutic approaches are urgently needed; however, novel combinations with immunotherapies and checkpoint inhibitors require suitable preclinical models with intact immune systems to be properly tested. Experimental Design: We have developed immunocompetent osteosarcoma models that grow orthotopically in the bone and spontaneously metastasize to the lungs, mimicking human osteosarcoma. These models have been used to test the effica…
Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis
2017
Increased oxidative stress has been suggested to initiate and promote tumorigenesis by inducing DNA damage and to suppress tumor development by triggering apoptosis and senescence. The contribution of individual cell types in the tumor microenvironment to these contrasting effects remains poorly understood. We provide evidence that during intestinal tumorigenesis, myeloid cell-derived H2O2 triggers genome-wide DNA mutations in intestinal epithelial cells to stimulate invasive growth. Moreover, increased reactive oxygen species (ROS) production in myeloid cells initiates tumor growth in various organs also in the absence of a carcinogen challenge in a paracrine manner. Our data identify an i…
2018
Abstract TNFα is a prominent proinflammatory cytokine and a critical mediator for the development of many types of cancer such as breast, colon, prostate, cervical, skin, liver, and chronic lymphocytic leukemia. Binding of TNFα to TNFR1 can lead to divergent signaling pathways promoting predominantly NF-κB activation but also cell death. We report here that the nitric oxide (NO) donor glyceryl trinitrate (GTN) converts TNFα, generated from immune cells or cancer cells stimulated by chemotherapy, into a prodeath mediator in colon and mammary cancer cells. GTN-mediated S-nitrosylation of cIAP1 on cysteines 571 and 574 inhibited its E3 ubiquitin ligase activity, which in turn reduced Lys63-lin…
Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNFα
2016
IF 7.932; International audience; The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has anti-inflammatory and anti-cancer properties. Among pro-inflammatory mediators, tumor necrosis factor a (TNF alpha) plays a paradoxical role in cancer biology with induction of cancer cell death or survival depending on the cellular context. The objective of the study was to evaluate the role of TNFa in DHA-mediated tumor growth inhibition and colon cancer cell death. The treatment of human colorectal cancer cells, HCT-116 and HCT-8 cells, with DHA triggered apoptosis in autocrine TNF alpha-dependent manner. We demonstrated that DHA-induced increased content of TNF alpha mRNA occurred thr…