Search results for " approximation"
showing 10 items of 575 documents
Théorie des spectres rovibroniques des molécules octaédriques : Hamiltonien et moments de transition
2002
This thesis is devoted to the treatment of rovibronic couplings of octahedral species for which the Born-Oppenheimer approximation is broken down. By using the octahedral formalism, a full effective rovibronic model is extended from works about molecules in a non-degenerate electronic state. This effective model is dedicated to molecules with an odd or an even number of electrons and it has been successfully applied to V(CO)6 and ReF6. For both of them we have four interacting vibronic sublevels attributed to a dynamical Jahn-Teller effect and giving rise to very complicated spectra. This model is validated by the overall agreement between predicted and observed band profiles. Moreover, an …
Non-Linear Hysteretic Instability in Rotating Machinery
2013
A method for the time-varying nonlinear prediction of complex nonstationary biomedical signals
2009
A method to perform time-varying (TV) nonlinear prediction of biomedical signals in the presence of nonstationarity is presented in this paper. The method is based on identification of TV autoregressive models through expansion of the TV coefficients onto a set of basis functions and on k -nearest neighbor local linear approximation to perform nonlinear prediction. The approach provides reasonable nonlinear prediction even for TV deterministic chaotic signals, which has been a daunting task to date. Moreover, the method is used in conjunction with a TV surrogate method to provide statistical validation that the presence of nonlinearity is not due to nonstationarity itself. The approach is t…
Stark ionization of atoms and molecules within density functional resonance theory
2013
We show that the energetics and lifetimes of resonances of finite systems under an external electric field can be captured by Kohn–Sham density functional theory (DFT) within the formalism of uniform complex scaling. Properties of resonances are calculated self-consistently in terms of complex densities, potentials, and wave functions using adapted versions of the known algorithms from DFT. We illustrate this new formalism by calculating ionization rates using the complex-scaled local density approximation and exact exchange. We consider a variety of atoms (H, He, Li, and Be) as well as the H2 molecule. Extensions are briefly discussed.
Geoestadística en regiones heterogéneas con distancia basada en el coste
2012
El germen de la presente tesis consistió en un problema aplicado, de ingeniería, al que pensamos que la Estadística como disciplina puede contribuir de manera significativa. Concretamente, se trata de la elaboración de mapas acústicos en entornos urbanos. Resuelto habitualmente de una manera determinista y aproximada, la valoración de la incertidumbre de los resultados es extremadamente deficiente en la mayoría de los casos reales. Este problema, siendo de naturaleza espacial, se puede ver como un problema de predicción geoestadística, a partir de un conjunto de observaciones de campo. La dificultad radica en que el fenómeno se sitúa en un entorno urbano, que posee una importante heterogene…
Modeling and simulation of a High Pressure Roller Crusher for silicon carbide production
2011
Author's version of a chapter published in the book: 11th International Conference on Electrical Power Quality and Utilisation. Also available from the publisher at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6128963&tag=1 This paper describes the modeling and simulation of High Pressure Roller Crusher (HPRC) for the production of silicon cabide grains. The study is to make a model for simulation of a High Pressure Roller Crusher. A High Pressure Roller Crusher (HPRC) is an important part in the production of silicon carbide, where the grains are crushed into powder form and then sieved into specified sizes based on its usage. This paper will present a model based on Johanson's…
Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.
2016
In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes o…
Higher-order Hamilton–Jacobi perturbation theory for anisotropic heterogeneous media: dynamic ray tracing in Cartesian coordinates
2018
With a Hamilton–Jacobi equation in Cartesian coordinates as a starting point, it is common to use a system of ordinary differential equations describing the continuation of first-order derivatives of phase-space perturbations along a reference ray. Such derivatives can be exploited for calculating geometrical spreading on the reference ray and for establishing a framework for second-order extrapolation of traveltime to points outside the reference ray. The continuation of first-order derivatives of phase-space perturbations has historically been referred to as dynamic ray tracing. The reason for this is its importance in the process of calculating amplitudes along the reference ray. We exte…
Considerations on the electromagnetic flow in Airy beams based on the Gouy phase
2012
We reexamine the Gouy phase in ballistic Airy beams (AiBs). A physical interpretation of our analysis is derived in terms of the local phase velocity and the Poynting vector streamlines. Recent experiments employing AiBs are consistent with our results. We provide an approach which potentially applies to any finite-energy paraxial wave field that lacks a beam axis. This research was funded by the Spanish Ministry of Economy and Competitiveness under the project TEC2009-11635.
ON THE BOUSSINESQ HIERARCHY
2002
A new sequence of nonlinear evolution systems satisfying the zero curvature property is constructed, by using the invariant singularity analysis. All these systems are completely integrable and a pseudo-potential (linearization) is explicitly determined for each of them. The second system of the sequence is the Broer-Kaup system, which, as is well known, corresponds to the higher order Boussinesq approximation in describing shallow water waves.