Search results for " artificial intelligence"
showing 10 items of 1992 documents
A naïve way of looking at fuzzy sets
2016
In this study, we consider the concept of a predicate (P) in a universe of discourse X from a specific viewpoint, i.e., the informational viewpoint with respect to its linguistic use. Its meaning and its different types are considered, particularly by considering the predicates that are "measurable" and designate a "collective" (P) in X, which is not always a classical subset of X. We show that the collective P manifests itself in different "states" or fuzzy sets, where knowledge and representation depend on the available information regarding the use of the predicate P in X. We also analyze the linguistic concept of a "collective" where the fuzzy sets are nothing other than informational s…
Engineering multi-agent systems using feedback loops and holarchies
2016
This paper presents a methodological approach for the engineering of Multi-Agent Systems using feedback loops as a first class concept in order to identify organizations. Feedback loops are a way for modeling complex systems that expose emergent behavior by means of a cause-effect loop between two levels called micro and macro levels of the system. The proposed approach principles consist in defining an abstract feedback loop pattern and providing activities and guidelines in order to identify and refine possible candidates for feedback loops during the analysis phase of the Aspecs methodology. This approach is illustrated by using an example drawn from the smart grid field.
Prediction-Based Assembly Assistance System
2020
This paper presents the design of a prediction-based assembly assistance system for manual operations and the results obtained on the data collected from experiments of assembling a customizable product. We integrated into the proposed system a Markov predictor improved with a padding mechanism whose role is to recommend the next assembly step and to detect the worker’s errors. The predictor is trained with correct assembly patterns and tested with real assembly/manufacturing data. The proposed predictor improves the coverage and, thus, there is a significantly higher number of assembly steps which are correctly correlated with the real intentions of the workers.
Accurate keyframe selection and keypoint tracking for robust visual odometry
2016
This paper presents a novel stereo visual odometry (VO) framework based on structure from motion, where a robust keypoint tracking and matching is combined with an effective keyframe selection strategy. In order to track and find correct feature correspondences a robust loop chain matching scheme on two consecutive stereo pairs is introduced. Keyframe selection is based on the proportion of features with high temporal disparity. This criterion relies on the observation that the error in the pose estimation propagates from the uncertainty of 3D points—higher for distant points, that have low 2D motion. Comparative results based on three VO datasets show that the proposed solution is remarkab…
Real time UAV altitude, attitude and motion estimation from hybrid stereovision
2012
International audience; Knowledge of altitude, attitude and motion is essential for an Unmanned Aerial Vehicle during crit- ical maneuvers such as landing and take-off. In this paper we present a hybrid stereoscopic rig composed of a fisheye and a perspective camera for vision-based navigation. In contrast to classical stereoscopic systems based on feature matching, we propose methods which avoid matching between hybrid views. A plane-sweeping approach is proposed for estimating altitude and de- tecting the ground plane. Rotation and translation are then estimated by decoupling: the fisheye camera con- tributes to evaluating attitude, while the perspective camera contributes to estimating t…
Forecasting portfolio returns using weighted fuzzy time series methods
2016
We propose using weighted fuzzy time series (FTS) methods to forecast the future performance of returns on portfolios. We model the uncertain parameters of the fuzzy portfolio selection models using a possibilistic interval-valued mean approach, and approximate the uncertain future return on a given portfolio by means of a trapezoidal fuzzy number. Introducing some modifications into the classical models of fuzzy time series, based on weighted operators, enables us to generate trapezoidal numbers as forecasts of the future performance of the portfolio returns. This fuzzy forecast makes it possible to approximate both the expected return and the risk of the investment through the value and a…
Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation
2016
This paper investigates the optimal control problem for discrete-time interval type-2 (IT2) fuzzy systems with pole constraints. An IT2 fuzzy controller is characterized by two predefined functions, and the membership functions and the premise rules of the IT2 fuzzy controller can be chosen freely. The pole assignment is considered, which is constrained in a presented disk region. Based on Lyapunov stability theory, sufficient conditions of asymptotic stability with an H ∞ performance are obtained for the discrete-time IT2 fuzzy model based (FMB) system. Based on the criterion, the desired IT2 state-feedback controller is designed to guarantee that the closed-loop system is asymptotically s…
Modeling and control of uncertain nonlinear systems
2018
A survey of the methodologies associated with the modeling and control of uncertain nonlinear systems has been given due importance in this paper. The basic criteria that highlights the work is relied on the various patterns of techniques incorporated for the solutions of fuzzy equations that corresponds to fuzzy controllability subject. The solutions which are generated by these equations are considered to be the controllers. Currently, numerical techniques have come out as superior techniques in order to solve these types of problems. The implementation of neural networks technique is contributed in the complex way of dealing the appropriate coefficients and solutions of the fuzzy systems.
A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
2017
Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often criticized because of a large number of function evaluations needed. Approximations, especially function approximations, also referred to as surrogates or metamodels are commonly used in the literature to reduce the computation time. This paper presents a survey of 45 different recent algorithms proposed in the literature between 2008 and 2016 to handle computationally expensive multiobjective optimization problems. Several algorithms are discussed based on what kind of an approximation such as problem, function or fitness approximation they use. Most emphasis is given to function approxim…
A Methodology for Modeling and Optimizing Social Systems
2020
[EN] A system methodology for modeling and optimizing social systems is presented. It allows constructing dynamical models formulated stochastically, i.e., their results are given by confidence intervals. The models provide optimal intervention ways to reach the stated objectives. Two optimization methods are used: (1) to test strategies and scenarios and (2) to optimize with a genetic algorithm. The application case presented is a small nonformal education Spanish business. First, the model is validated in the 2008-2012 period, and subsequently, the optimal way to obtain a maximum profit in the 2013-2025 period is obtained using the two methods.