Search results for " artificial intelligence"

showing 10 items of 1992 documents

An ontology for cognitive mimetics

2018

AI and autonomous systems are intended to replace people in several jobs. People have worked in these jobs being able to execute the required information processing. This implies that new technical artefacts must be able to perform equitably effective information processing. Thus, it makes sense to develop the analysis of human information processing in designing intelligent systems. This approach has been termed cognitive mimetics. This paper studies how it would be practical to gain knowledge about human information processing and organize this knowledge using ontologies.

Artificial intelligenceComputer science05 social sciencesIntelligent decision support systemInformation processingExpert studiesCognitionCognitive mimetics02 engineering and technologyOntology (information science)Design methodsHuman–computer interactionAI0202 electrical engineering electronic engineering information engineeringOntology020201 artificial intelligence & image processing0501 psychology and cognitive sciencesProtocol analysis050107 human factors
researchProduct

Real-time micro-expression analysis by artificial vision

2022

Human-computer interaction technologies focus more and more on the human being, whether it is on his identity, or on his physical and mental state. Significant progress has been made in the last few decades. However, the study of thoughts and emotions is still an underdeveloped field, but one that has begun to gain considerable interest. In this field, the analysis of facial expressions is the preferred treatment.Unlike a macro-expression, which is visible to the eye, a micro-expression is a type of involuntary facial expression that is extremely rapid and of very low intensity. The computer vision scientific community has been studying ways to automatically recognize micro-expressions usin…

Artificial intelligence[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingVision par ordinateurMachine learningComputer visionEmotional artificial intelligenceApprentissage automatiqueIntelligence artificielleIntelligence artificielle émotionnelle
researchProduct

Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation

2019

Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…

Artificial intelligencelcsh:Computer engineering. Computer hardwareExtreme learning machineEnsemble methodsComputer scienceBinary numberlcsh:TK7885-7895Feature selection02 engineering and technologyIntrusion detection systemlcsh:QA75.5-76.95Machine learning0202 electrical engineering electronic engineering information engineeringVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Multi layerExtreme learning machinebusiness.industryIntrusion detection system020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsBinary classificationFeature selectionSignal ProcessingSoftmax function020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceArtificial intelligencebusinessClassifier (UML)EURASIP Journal on Information Security
researchProduct

Development of artificial neural network for condition assessment of bridges based on hybrid decision making method – Feasibility study

2021

Abstract Managing a bridge at an appropriate level of reliability requires knowledge of its technical condition, which is decisive in terms of maintenance and repair activities. This is a multi-criteria decision-making problem which results from the need to allocate limited financial resources to this work. Although many calculation models have been suggested in published sources, none of them has ever met these requirements. The algorithm presented by the authors allows for the assessment of any number of bridges, taking into account the diversity of solutions in terms of materials and structures, and can provide a solution to this problem. This hybrid calculation model, combining the modi…

Artificial neural network (ANN)Railway bridge0209 industrial biotechnologyExtent analysis fuzzy analytic hierarchy process (EA FAHP)Artificial neural networkComputer scienceGeneral EngineeringMulti-criteria decision analysis (MCDA)Analytic hierarchy process02 engineering and technologyCondition assessmentBridge (nautical)ManagementComputer Science ApplicationsReliability engineering020901 industrial engineering & automationDevelopment (topology)Work (electrical)Artificial IntelligenceDecision making methodsDominant analytic hierarchy process (DAHP)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingBridge management system (BMS)Reliability (statistics)Expert Systems with Applications
researchProduct

Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks

2019

The present paper discussed the development of a reliable and robust artificial neural network (ANN) capable of predicting the tribological performance of three highly alloyed tool steel grades. Experimental results were obtained by performing plane-contact sliding tests under non-lubrication conditions on a pin-on-disk tribometer. The specimens were tested both in untreated state with different hardening levels, and after surface treatment of nitrocarburizing. We concluded that wear maps via ANN modeling were a user-friendly approach for the presentation of wear-related information, since they easily permitted the determination of areas under steady-state wear that were appropriate for use…

Artificial neural networkComputer science0211 other engineering and technologiesMechanical engineering02 engineering and technologyengineering.materiallcsh:Technologylcsh:ChemistrySoft computing technique0202 electrical engineering electronic engineering information engineeringGeneral Materials Sciencesoft computing techniquesInstrumentationlcsh:QH301-705.5021101 geological & geomatics engineeringFluid Flow and Transfer ProcessesArtificial neural networklcsh:TProcess Chemistry and Technologyartificial intelligence techniquesGeneral EngineeringArtificial intelligence techniqueTribologyTribological performancelcsh:QC1-999Computer Science Applicationslcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Tool steelengineering020201 artificial intelligence & image processinglcsh:Engineering (General). Civil engineering (General)artificial neural networkslcsh:PhysicsTribometerHardening (computing)
researchProduct

A Cluster Analysis of Stock Market Data Using Hierarchical SOMs

2016

The analysis of stock markets has become relevant mainly because of its financial implications. In this paper, we propose a novel methodology for performing a structured cluster analysis of stock market data. Our proposed method uses a tree-based neural network called the TTOSOM. The TTOSOM performs self-organization to construct tree-based clusters of vector data in the multi-dimensional space. The resultant tree possesses interesting mathematical properties such as a succinct representation of the original data distribution, and a preservation of the underlying topology. In order to demonstrate the capabilities of our method, we analyze 206 assets of the Italian stock market. We were able…

Artificial neural networkComputer scienceMathematical properties020206 networking & telecommunications02 engineering and technologycomputer.software_genreOriginal data0202 electrical engineering electronic engineering information engineeringCluster (physics)020201 artificial intelligence & image processingStock marketData miningCluster analysiscomputerStock (geology)
researchProduct

Speech Emotion Recognition method using time-stretching in the Preprocessing Phase and Artificial Neural Network Classifiers

2020

Human emotions are playing a significant role in the understanding of human behaviour. There are multiple ways of recognizing human emotions, and one of them is through human speech. This paper aims to present an approach for designing a Speech Emotion Recognition (SER) system for an industrial training station. While assembling a product, the end user emotions can be monitored and used as a parameter for adapting the training station. The proposed method is using a phase vocoder for time-stretching and an Artificial Neural Network (ANN) for classification of five typical different emotions. As input for the ANN classifier, features like Mel Frequency Cepstral Coefficients (MFCCs), short-te…

Artificial neural networkComputer scienceSpeech recognitionPhase vocoderAudio time-scale/pitch modification020206 networking & telecommunications02 engineering and technologyComputingMethodologies_PATTERNRECOGNITION0202 electrical engineering electronic engineering information engineeringPreprocessor020201 artificial intelligence & image processingMel-frequency cepstrumEmotion recognitionClassifier (UML)Speech rate2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP)
researchProduct

Support Tool for the Combined Software/Hardware Design of On-Chip ELM Training for SLFF Neural Networks

2016

Typically, hardware implemented neural networks are trained before implementation. Extreme learning machine (ELM) is a noniterative training method for single-layer feed-forward (SLFF) neural networks well suited for hardware implementation. It provides fixed-time learning and simplifies retraining of a neural network once implemented, which is very important in applications demanding on-chip training. This study proposes the data flow of a software support tool in the design process of a hardware implementation of on-chip ELM learning for SLFF neural networks. The software tool allows the user to obtain the optimal definition of functional and hardware parameters for any application, and e…

Artificial neural networkComputer sciencebusiness.industry020208 electrical & electronic engineering02 engineering and technologyComputer Science ApplicationsData flow diagramSoftwareControl and Systems EngineeringGate arrayEmbedded system0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSystem on a chipElectrical and Electronic EngineeringbusinessEngineering design processComputer hardwareInformation SystemsExtreme learning machineIEEE Transactions on Industrial Informatics
researchProduct

Hybrid Particle Swarm Optimization With Genetic Algorithm to Train Artificial Neural Networks for Short-Term Load Forecasting

2019

This research proposes a new training algorithm for artificial neural networks (ANNs) to improve the short-term load forecasting (STLF) performance. The proposed algorithm overcomes the so-called training issue in ANNs, where it traps in local minima, by applying genetic algorithm operations in particle swarm optimization when it converges to local minima. The training ability of the hybridized training algorithm is evaluated using load data gathered by Electricity Generating Authority of Thailand. The ANN is trained using the new training algorithm with one-year data to forecast equal 48 periods of each day in 2013. During the testing phase, a mean absolute percentage error (MAPE) is used …

Artificial neural networkComputer sciencebusiness.industry020209 energyLoad forecastingTraining (meteorology)Particle swarm optimization02 engineering and technologyBackpropagationComputer Science ApplicationsTerm (time)Computational Theory and MathematicsArtificial IntelligenceGenetic algorithm0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessInternational Journal of Swarm Intelligence Research
researchProduct

Fall Detection Based on the Instantaneous Doppler Frequency : A Machine Learning Approach

2019

Modern societies are facing an ageing problem which comes with increased cost of healthcare. A major share of this ever-increasing cost is due to fall related injuries, which urges the development of fall detection systems. In this context, this paper paves the way for building of a radio-frequency-based fall detection system. This paper presents an activity simulator that generates the complex channel gain of indoor channels in the presence of one person performing three different activities, namely, slow fall, fast fall, and walking. We built a machine learning framework for activity recognition based on the complex channel gain. We assess the recognition accuracy of three different class…

Artificial neural networkComputer sciencebusiness.industryDecision tree020206 networking & telecommunicationsContext (language use)02 engineering and technologyMachine learningcomputer.software_genreVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420Support vector machineActivity recognitionStatistical classificationDoppler frequency0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingFall detectionArtificial intelligencebusinesscomputerVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550
researchProduct