Search results for " artificial intelligence"
showing 10 items of 1992 documents
BIAM: a new bio-inspired analysis methodology for digital ecosystems based on a scale-free architecture
2017
Today we live in a world of digital objects and digital technology; industry and humanities as well as technologies are truly in the midst of a digital environment driven by ICT and cyber informatics. A digital ecosystem can be defined as a digital environment populated by interacting and competing digital species. Digital species have autonomous, proactive and adaptive behaviors, regulated by peer-to-peer interactions without central control point. An interconnecting architecture with few highly connected nodes (hubs) and many low connected nodes has a scale- free architecture. A new bio-inspired analysis methodology (BIAM) environment, an investigation strategy for information flow, fault…
Visual contact with catadioptric cameras
2015
Abstract Time to contact or time to collision (TTC) is utmost important information for animals as well as for mobile robots because it enables them to avoid obstacles; it is a convenient way to analyze the surrounding environment. The problem of TTC estimation is largely discussed in perspective images. Although a lot of works have shown the interest of omnidirectional camera for robotic applications such as localization, motion, monitoring, few works use omnidirectional images to compute the TTC. In this paper, we show that TTC can be also estimated on catadioptric images. We present two approaches for TTC estimation using directly or indirectly the optical flow based on de-rotation strat…
Hankelet-based action classification for motor intention recognition
2017
Powered lower-limb prostheses require a natural, and an easy-to-use, interface for communicating amputee’s motor intention in order to select the appropriate motor program in any given context, or simply to commute from active (powered) to passive mode of functioning. To be widely accepted, such an interface should not put additional cognitive load at the end-user, it should be reliable and minimally invasive. In this paper we present a one such interface based on a robust method for detecting and recognizing motor actions from a low-cost wearable sensor network mounted on a sound leg providing inertial (accelerometer, gyrometer and magnetometer) data in real-time. We assume that the sensor…
Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations
2020
[EN] The development of accurate real-time models of the biomechanical behavior of different organs and tissues still poses a challenge in the field of biomechanical engineering. In the case of the liver, specifically, such a model would constitute a great leap forward in the implementation of complex applications such as surgical simulators, computed-assisted surgery or guided tumor irradiation. In this work, a relatively novel approach for developing such a model is presented. It consists in the use of a machine learning algorithm, which provides real-time inference, trained on tens of thousands of simulations of the biomechanical behavior of the liver carried out by the finite element me…
Using the Analytic Hierarchy Process (AHP) and fuzzy logic to evaluate the possibility of introducing single point incremental forming on industrial …
2018
Abstract Single point incremental forming (SPIF) is a promising forming process, yet not entirely accepted and implemented on industrial scale, due to several reasons, presented in the paper. The approach presented here develops an evaluation method for the degree of its industrial implementation. Several factors which will favor the industrial implementation of ASPIF are identified and their weights are hierarchized by means of AHP. To assess the robustness of the AHP, a sensitivity analysis was also presented. Furthermore, a fuzzy inference system was built, having as output the degree of industrial implementation of SPIF.
Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems with Time Delay
2016
In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main con…
Smart sensing and adaptive reasoning for enabling industrial robots with interactive human-robot capabilities in dynamic environments — a case study
2019
Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision a…
Scalability of GPU-Processed 3D Distance Maps for Industrial Environments
2018
This paper contains a benchmark analysis of the open source library GPU-Voxels together with the Robot Operating System (ROS) in large-scale industrial robotics environment. Six sensor nodes with embedded computing generate real-time point cloud data as ROS topics. The overall data from all sensor nodes is processed by a combination of CPU and GPU on a central ROS node. Experimental results demonstrate that the system is able to handle frame rates of 10 and 20 Hz with voxel sizes of 4, 6, 8 and 12 cm without saturation of the CPU or the GPU used by the GPU-Voxels library. The results in this paper show that ROS, in combination with GPU-Voxels, can be used as a viable solution for real-time …
Autonomous 3D geometry reconstruction through robot-manipulated optical sensors
2021
Abstract Many industrial sectors face increasing production demands and need to reduce costs, without compromising the quality. Whereas mass production relies on well-established protocols, small production facilities with small lot sizes struggle to update their highly changeable production at reasonable costs. The use of robotics and automation has grown significantly in recent years, but extremely versatile robotic manipulators are still not commonly used in small factories. Beside of the investments required to enable efficient and profitable use of robot technology, the efforts needed to program robots are only economically viable in case of large lot sizes. Generating robot programs f…
Robust link prediction in criminal networks: A case study of the Sicilian Mafia
2020
Abstract Link prediction exercises may prove particularly challenging with noisy and incomplete networks, such as criminal networks. Also, the link prediction effectiveness may vary across different relations within a social group. We address these issues by assessing the performance of different link prediction algorithms on a mafia organization. The analysis relies on an original dataset manually extracted from the judicial documents of operation “Montagna”, conducted by the Italian law enforcement agencies against individuals affiliated with the Sicilian Mafia. To run our analysis, we extracted two networks: one including meetings and one recording telephone calls among suspects, respect…