Search results for " atom"
showing 6 items of 1526 documents
Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments
2016
We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that comply with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma-rays from the Galactic centre observed by the Fermi~Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass ~80-100 GeV annihilating into WW with a branching ratio of 95% ; the second to heavier neutralinos, with mass ~…
The Role of the Anchor Atom in the Ligand of the Monolayer-Protected Au25(XR)18– Nanocluster
2015
We present a density functional theory (DFT) investigation on the role of the anchor atom and ligand on the structural, electronic, and optical properties of the anionic Au25(XR)18– nanocluster (X = S, Se, Te; R = H, CH3, and (CH2)2Ph). Substituting the anchor atom with other group 16 elements induces subtle changes in the Au–Au and Au–X bond lengths and polarization of the covalent bond. The changes in the electronic structure based on substituting both the anchor and R groups are presented through careful analysis of the density of states and theoretical determined optical spectra. We give a detailed side-by-side comparison into the structural, electronic, and optical properties of Au25(X…
The resonant state at filling factor {\nu} = 1/2 in chiral fermionic ladders
2017
Helical liquids have been experimentally detected in both nanowires and ultracold atomic chains as the result of strong spin-orbit interactions. In both cases the inner degrees of freedom can be considered as an additional space dimension, providing an interpretation of these systems as synthetic ladders, with artificial magnetic fluxes determined by the spin-orbit terms. In this work, we characterize the helical state which appears at filling $\nu=1/2$: this state is generated by a gap arising in the spin sector of the corresponding Luttinger liquid and it can be interpreted as the one-dimensional (1D) limit of a fractional quantum Hall state of bosonic pairs of fermions. We study its main…
The XENON1T Dark Matter Experiment
2017
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. © 2017, The Author(s).
Zanieczyszczenie metalami ciężkimi Matricaria chamomilla L. i Plantago lanceolata L
2019
Celem badań była ocena zanieczyszczenia metalami ciężkimi (Mn, Fe, Ni, Cu, Zn, Cd i Pb) rumianku lekarskiego (Matricaria chamomilla L.) i babki lancetowatej (Plantago lanceolata L.). W ramach biomonitoringu pasywnego pobrano próbki roślin leczniczych oraz próbki gleby, na której rosły rośliny. Metale ciężkie oznaczono za pomocą absorpcyjnej spektrometrii atomowej (AAS). Na podstawie przeprowadzonych badań można stwierdzić, że zioła wykorzystane do badań różniły się pod względem stężeń metali ciężkich w zależności od miejsca ich pobierania. Wszystkie próbki ziół były zanieczyszczone wysokimi stężeniami manganu, żelaza oraz cynku. Badane próbki gleb z grupy B i C według rozporządzenia ministr…
Interplay between the Belousov-Zhabotinsky reaction-diffusion system and biomimetic matrices
2007
Abstract Interactions between reaction–diffusion systems and restricted host environments are a subject of widespread interest. In this work the behaviour of the Belousov–Zhabotinsky reaction was investigated in lamellar phases formed by phospholipid bilayers with relevance for biological systems. The influence of the reactive medium on the structure of the lipid matrix and, in turn, the influence of the matrix on the dynamical evolution of chemical patterns, were studied by small angle scattering.